Feihu Hu;Xuan Feng;Huaiwen Xu;Xinhao Liang;Xuanyuan Wang
{"title":"Ultra-Short-Term Spatio-Temporal Wind Speed Prediction Based on OWT-STGradRAM","authors":"Feihu Hu;Xuan Feng;Huaiwen Xu;Xinhao Liang;Xuanyuan Wang","doi":"10.1109/TSTE.2025.3534589","DOIUrl":null,"url":null,"abstract":"Taking into account the orientation and distance characteristics of wind turbine stations in wind farms can improve the accuracy of wind power prediction. This paper proposed a deep learning spatio-temporal prediction method named orthogonal wind direction transformation spatio-temporal gradient Regression Activation Mapping (OWT-STGrad-RAM) for wind speed prediction. The model encodes the wind farm using an image, and each wind turbine is encoded as a point in the image. The spatio-temporal data related to wind turbines, such as wind speed, temperature, and air pressure, are integrated into fusion features through spatio-temporal fusion convolutional networks model for pre training to obtain a feature dataset. OWT is used to eliminate the effects of different prevailing winds, and STGrad-RAM is used to characterize the orientation and distance between wind turbine nodes and make the spatial features interpretable. The feature dataset is used for wind speed prediction. The experimental results show that the proposed method has achieved a significant improvement in wind speed prediction accuracy compared to the comparative models.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"16 3","pages":"1816-1826"},"PeriodicalIF":10.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10869841/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Taking into account the orientation and distance characteristics of wind turbine stations in wind farms can improve the accuracy of wind power prediction. This paper proposed a deep learning spatio-temporal prediction method named orthogonal wind direction transformation spatio-temporal gradient Regression Activation Mapping (OWT-STGrad-RAM) for wind speed prediction. The model encodes the wind farm using an image, and each wind turbine is encoded as a point in the image. The spatio-temporal data related to wind turbines, such as wind speed, temperature, and air pressure, are integrated into fusion features through spatio-temporal fusion convolutional networks model for pre training to obtain a feature dataset. OWT is used to eliminate the effects of different prevailing winds, and STGrad-RAM is used to characterize the orientation and distance between wind turbine nodes and make the spatial features interpretable. The feature dataset is used for wind speed prediction. The experimental results show that the proposed method has achieved a significant improvement in wind speed prediction accuracy compared to the comparative models.
期刊介绍:
The IEEE Transactions on Sustainable Energy serves as a pivotal platform for sharing groundbreaking research findings on sustainable energy systems, with a focus on their seamless integration into power transmission and/or distribution grids. The journal showcases original research spanning the design, implementation, grid-integration, and control of sustainable energy technologies and systems. Additionally, the Transactions warmly welcomes manuscripts addressing the design, implementation, and evaluation of power systems influenced by sustainable energy systems and devices.