Advanced Grid-Forming Undersea Pumped Storage to Enable 100% Renewable Offshore Oilfield Power Systems

IF 10 1区 工程技术 Q1 ENERGY & FUELS
Kaiyuan Su;Xi Wang;Xiaorong Xie
{"title":"Advanced Grid-Forming Undersea Pumped Storage to Enable 100% Renewable Offshore Oilfield Power Systems","authors":"Kaiyuan Su;Xi Wang;Xiaorong Xie","doi":"10.1109/TSTE.2025.3533893","DOIUrl":null,"url":null,"abstract":"To advance carbon reduction of the offshore oilfield power system (OOPS), the grid-forming undersea pumped storage system (GFM-UPSS) emerges as a promising solution. This paper introduces a novel framework for a 100% renewable OOPS utilizing the GFM-UPSS. Firstly, the control strategy of the GFM-UPSS is presented. It consists of the grid-side converter (GSC), machine-side converter (MSC), and reversible pump-turbine (RPT) to achieve frequency and voltage regulation. A steady-state model is then developed detailing the water head, power, and volume of the spherical shell. In addition, the paper explores the converter parameter impacts on the GFM-UPSS transient model and derives the closed-form solutions. With the steady-state model, an optimal sizing method is presented and economic advantages in the marine environment are studied for the GFM-UPSS. Finally, EMT simulations are conducted to assess the frequency & voltage stabilities and verify the effectiveness of the GFM-UPSS in enabling a 100% renewable OOPS. The optimal sizing results show that construction costs, mainly for OWP, are dominated and are influenced by sphere radius, placement depth, and start-stop cycles, while a 2.5 capacity ratio between OWP and GFM-UPSS consistently emerges as optimal. Moreover, analysis of transient stability shows that it improves with higher frequency & voltage modulation coefficient and lower virtual impedance. The impact of RPT and MSC, mainly on frequency regulation, is determined by the DC droop coefficient and turbine inertia.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"16 3","pages":"1791-1805"},"PeriodicalIF":10.0000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10854915/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

To advance carbon reduction of the offshore oilfield power system (OOPS), the grid-forming undersea pumped storage system (GFM-UPSS) emerges as a promising solution. This paper introduces a novel framework for a 100% renewable OOPS utilizing the GFM-UPSS. Firstly, the control strategy of the GFM-UPSS is presented. It consists of the grid-side converter (GSC), machine-side converter (MSC), and reversible pump-turbine (RPT) to achieve frequency and voltage regulation. A steady-state model is then developed detailing the water head, power, and volume of the spherical shell. In addition, the paper explores the converter parameter impacts on the GFM-UPSS transient model and derives the closed-form solutions. With the steady-state model, an optimal sizing method is presented and economic advantages in the marine environment are studied for the GFM-UPSS. Finally, EMT simulations are conducted to assess the frequency & voltage stabilities and verify the effectiveness of the GFM-UPSS in enabling a 100% renewable OOPS. The optimal sizing results show that construction costs, mainly for OWP, are dominated and are influenced by sphere radius, placement depth, and start-stop cycles, while a 2.5 capacity ratio between OWP and GFM-UPSS consistently emerges as optimal. Moreover, analysis of transient stability shows that it improves with higher frequency & voltage modulation coefficient and lower virtual impedance. The impact of RPT and MSC, mainly on frequency regulation, is determined by the DC droop coefficient and turbine inertia.
先进的海底抽水蓄能系统,可实现100%可再生的海上油田电力系统
为了推进海上油田电力系统(OOPS)的碳减排,并网式海底抽水蓄能系统(GFM-UPSS)成为一种很有前途的解决方案。本文介绍了一种利用ggm - upss实现100%可再生OOPS的新框架。首先,给出了ggm - upss的控制策略。它由网侧变流器(GSC)、机侧变流器(MSC)和可逆泵-水轮机(RPT)组成,实现频率和电压的调节。然后建立了一个稳态模型,详细描述了水头、功率和球壳的体积。此外,本文还探讨了变流器参数对GFM-UPSS暂态模型的影响,并推导了闭式解。在此基础上,提出了ggm - upss的最优定尺方法,并对其在海洋环境中的经济效益进行了研究。最后,进行了EMT模拟,以评估频率和电压稳定性,并验证ggm - upss在实现100%可再生OOPS方面的有效性。最优规模结果表明,OWP的建设成本主要受球体半径、放置深度和启停周期的影响,而OWP与ggm - upss的容量比始终为2.5时最优。此外,对暂态稳定性的分析表明,频率和电压调制系数越高,虚阻抗越低,暂态稳定性越好。RPT和MSC对频率调节的影响主要由直流下垂系数和涡轮惯量决定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Sustainable Energy
IEEE Transactions on Sustainable Energy ENERGY & FUELS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
21.40
自引率
5.70%
发文量
215
审稿时长
5 months
期刊介绍: The IEEE Transactions on Sustainable Energy serves as a pivotal platform for sharing groundbreaking research findings on sustainable energy systems, with a focus on their seamless integration into power transmission and/or distribution grids. The journal showcases original research spanning the design, implementation, grid-integration, and control of sustainable energy technologies and systems. Additionally, the Transactions warmly welcomes manuscripts addressing the design, implementation, and evaluation of power systems influenced by sustainable energy systems and devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信