{"title":"Optimized Operation of Hybrid Wind-Hydrogen System to Provide Flexibility for Transmission System Needs","authors":"Hosna Khajeh;Sahar Seyyedeh-Barhagh;Hannu Laaksonen","doi":"10.1109/TSTE.2024.3519953","DOIUrl":null,"url":null,"abstract":"This paper focuses on the optimized and coordinated operation of a hybrid system comprising wind turbines, a hydrogen electrolyzer, and hydrogen storage. A day-ahead optimized schedule is developed for the hybrid wind-hydrogen system to provide flexibility in meeting the transmission system operator's needs, offering frequency control support through frequency containment reserves (FCR) and managing congestion on nearby transmission lines. The proposed operation strategy enables effective participation in three reserve markets (FCR-N, upward, and downward FCR-D) while robustly managing uncertainties in wind power forecasting by leveraging the flexibility of the hydrogen electrolyzer and hydrogen storage. Utilizing historical data on FCR activation during normal grid operation and disturbances, this strategy robustly addresses frequency-driven uncertainties. The effectiveness of the proposed method is demonstrated through two case studies using real-world data on frequency deviations and market prices in Finland. Additionally, the proposed strategy is compared with two alternative approaches: one based on spot market prices and another prioritizing self-sufficiency over financial gains.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"16 3","pages":"1576-1588"},"PeriodicalIF":10.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10806878","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10806878/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper focuses on the optimized and coordinated operation of a hybrid system comprising wind turbines, a hydrogen electrolyzer, and hydrogen storage. A day-ahead optimized schedule is developed for the hybrid wind-hydrogen system to provide flexibility in meeting the transmission system operator's needs, offering frequency control support through frequency containment reserves (FCR) and managing congestion on nearby transmission lines. The proposed operation strategy enables effective participation in three reserve markets (FCR-N, upward, and downward FCR-D) while robustly managing uncertainties in wind power forecasting by leveraging the flexibility of the hydrogen electrolyzer and hydrogen storage. Utilizing historical data on FCR activation during normal grid operation and disturbances, this strategy robustly addresses frequency-driven uncertainties. The effectiveness of the proposed method is demonstrated through two case studies using real-world data on frequency deviations and market prices in Finland. Additionally, the proposed strategy is compared with two alternative approaches: one based on spot market prices and another prioritizing self-sufficiency over financial gains.
期刊介绍:
The IEEE Transactions on Sustainable Energy serves as a pivotal platform for sharing groundbreaking research findings on sustainable energy systems, with a focus on their seamless integration into power transmission and/or distribution grids. The journal showcases original research spanning the design, implementation, grid-integration, and control of sustainable energy technologies and systems. Additionally, the Transactions warmly welcomes manuscripts addressing the design, implementation, and evaluation of power systems influenced by sustainable energy systems and devices.