{"title":"Low Carbon Economic Energy Management Method in a Microgrid Based on Enhanced D3QN Algorithm With Mixed Penalty Function","authors":"Chanjuan Zhao;Yunlong Li;Qian Zhang;Lina Ren","doi":"10.1109/TSTE.2025.3528952","DOIUrl":null,"url":null,"abstract":"In this paper, an enhanced dueling double deep Q network algorithm with mixed penalty function (EN-D3QN-MPF) for microgrid energy management control is developed. First, a novel microgrid model including PV, wind turbine generator, electric storage system, electric vehicle charging station, thermostatically controlled loads, and residential price-responsive loads are proposed. Then, by combining the mixed penalty function method with D3QN reinforcement learning together, a mixed penalty function method is implemented to balance the reward weightings. Accordingly, an EN-D3QN-MPF algorithm is presented to achieve low-carbon economic and EV users' charging satisfaction operation of the microgrid. The effectiveness of the proposed method is verified by the dataset collected from eastern China in 2019. Simulation results validate that our proposed method has superior energy management performance over the genetic algorithm (GA), Particle Swarm Optimization (PSO), dueling deep Q network (dueling DQN), double DQN (DDQN), and D3QN algorithms.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"16 3","pages":"1686-1696"},"PeriodicalIF":10.0000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10839632/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, an enhanced dueling double deep Q network algorithm with mixed penalty function (EN-D3QN-MPF) for microgrid energy management control is developed. First, a novel microgrid model including PV, wind turbine generator, electric storage system, electric vehicle charging station, thermostatically controlled loads, and residential price-responsive loads are proposed. Then, by combining the mixed penalty function method with D3QN reinforcement learning together, a mixed penalty function method is implemented to balance the reward weightings. Accordingly, an EN-D3QN-MPF algorithm is presented to achieve low-carbon economic and EV users' charging satisfaction operation of the microgrid. The effectiveness of the proposed method is verified by the dataset collected from eastern China in 2019. Simulation results validate that our proposed method has superior energy management performance over the genetic algorithm (GA), Particle Swarm Optimization (PSO), dueling deep Q network (dueling DQN), double DQN (DDQN), and D3QN algorithms.
期刊介绍:
The IEEE Transactions on Sustainable Energy serves as a pivotal platform for sharing groundbreaking research findings on sustainable energy systems, with a focus on their seamless integration into power transmission and/or distribution grids. The journal showcases original research spanning the design, implementation, grid-integration, and control of sustainable energy technologies and systems. Additionally, the Transactions warmly welcomes manuscripts addressing the design, implementation, and evaluation of power systems influenced by sustainable energy systems and devices.