{"title":"Hubbard and strain effects on electronic, magnetic and elastic properties of FeV, Fe3V and FeV3","authors":"A. Elkhou , M. Lassri , L.B. Drissi","doi":"10.1016/j.jmmm.2025.173257","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we explore the electronic, elastic, and magnetic properties of <span><math><mi>FeV</mi></math></span>, <span><math><mrow><msub><mrow><mi>Fe</mi></mrow><mrow><mn>3</mn></mrow></msub><mi>V</mi></mrow></math></span> and <span><math><msub><mrow><mi>FeV</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> alloys using density functional theory (DFT) with the GGA and GGA+U approximations. The GGA+U method, incorporating the Hubbard correction, provides a more accurate description of magnetic interactions compared to standard GGA. Notably, the inclusion of the Hubbard U parameter enhances the metallic characteristics, particularly for the <span><math><msub><mrow><mi>FeV</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> alloy, which transitions from a non-magnetic to a magnetic metal. We also evaluate the changes in elastic properties across the compounds and examine the influence of tensile strain on the <span><math><mrow><mi>B</mi><mn>2</mn><mo>−</mo><mi>FeV</mi></mrow></math></span> phase, revealing its mechanical response. Under strain, <span><math><mrow><mi>B</mi><mn>2</mn><mo>−</mo><mi>FeV</mi></mrow></math></span> exhibits a metal-to-half-metal transition at strains of 4.9% and 5%, with 100% spin polarization. Additionally, the Curie temperature reaches 820.82 K, well above room temperature, highlighting its potential for applications in electronics and spintronics.</div></div>","PeriodicalId":366,"journal":{"name":"Journal of Magnetism and Magnetic Materials","volume":"629 ","pages":"Article 173257"},"PeriodicalIF":2.5000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetism and Magnetic Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304885325004895","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we explore the electronic, elastic, and magnetic properties of , and alloys using density functional theory (DFT) with the GGA and GGA+U approximations. The GGA+U method, incorporating the Hubbard correction, provides a more accurate description of magnetic interactions compared to standard GGA. Notably, the inclusion of the Hubbard U parameter enhances the metallic characteristics, particularly for the alloy, which transitions from a non-magnetic to a magnetic metal. We also evaluate the changes in elastic properties across the compounds and examine the influence of tensile strain on the phase, revealing its mechanical response. Under strain, exhibits a metal-to-half-metal transition at strains of 4.9% and 5%, with 100% spin polarization. Additionally, the Curie temperature reaches 820.82 K, well above room temperature, highlighting its potential for applications in electronics and spintronics.
期刊介绍:
The Journal of Magnetism and Magnetic Materials provides an important forum for the disclosure and discussion of original contributions covering the whole spectrum of topics, from basic magnetism to the technology and applications of magnetic materials. The journal encourages greater interaction between the basic and applied sub-disciplines of magnetism with comprehensive review articles, in addition to full-length contributions. In addition, other categories of contributions are welcome, including Critical Focused issues, Current Perspectives and Outreach to the General Public.
Main Categories:
Full-length articles:
Technically original research documents that report results of value to the communities that comprise the journal audience. The link between chemical, structural and microstructural properties on the one hand and magnetic properties on the other hand are encouraged.
In addition to general topics covering all areas of magnetism and magnetic materials, the full-length articles also include three sub-sections, focusing on Nanomagnetism, Spintronics and Applications.
The sub-section on Nanomagnetism contains articles on magnetic nanoparticles, nanowires, thin films, 2D materials and other nanoscale magnetic materials and their applications.
The sub-section on Spintronics contains articles on magnetoresistance, magnetoimpedance, magneto-optical phenomena, Micro-Electro-Mechanical Systems (MEMS), and other topics related to spin current control and magneto-transport phenomena. The sub-section on Applications display papers that focus on applications of magnetic materials. The applications need to show a connection to magnetism.
Review articles:
Review articles organize, clarify, and summarize existing major works in the areas covered by the Journal and provide comprehensive citations to the full spectrum of relevant literature.