Xin Lei , Zhen Li , Huaiguang Jiang , Samson S. Yu , Yu Chen , Bin Liu , Peng Shi
{"title":"Deep-learning based optimal PMU placement and fault classification for power system","authors":"Xin Lei , Zhen Li , Huaiguang Jiang , Samson S. Yu , Yu Chen , Bin Liu , Peng Shi","doi":"10.1016/j.eswa.2025.128586","DOIUrl":null,"url":null,"abstract":"<div><div>Phasor measurement units (PMUs) are vital for power grid monitoring, yet their high cost restricts widespread adoption. PMU measurement data is also crucial for fault analysis in power systems. However, existing research seldom explores the interplay between optimal PMU placement (OPP) and fault analysis, impeding advancements in grid economy and security. This study introduces a perception-driven, deep learning-based optimization approach that integrates OPP, multi-task learning, and fault data augmentation. First, deep reinforcement learning optimizes PMU placement, balancing cost-effectiveness with observability requirements. Next, multi-task learning, enhanced by Bayesian optimization, improves fault classification efficiency using PMU data. Finally, pre-trained models paired with <span><math><mi>k</mi></math></span>-means clustering augment fault data, boosting classification accuracy. Extensive simulations across four IEEE standard test systems validate the proposed method’s effectiveness.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"292 ","pages":"Article 128586"},"PeriodicalIF":7.5000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417425022055","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Phasor measurement units (PMUs) are vital for power grid monitoring, yet their high cost restricts widespread adoption. PMU measurement data is also crucial for fault analysis in power systems. However, existing research seldom explores the interplay between optimal PMU placement (OPP) and fault analysis, impeding advancements in grid economy and security. This study introduces a perception-driven, deep learning-based optimization approach that integrates OPP, multi-task learning, and fault data augmentation. First, deep reinforcement learning optimizes PMU placement, balancing cost-effectiveness with observability requirements. Next, multi-task learning, enhanced by Bayesian optimization, improves fault classification efficiency using PMU data. Finally, pre-trained models paired with -means clustering augment fault data, boosting classification accuracy. Extensive simulations across four IEEE standard test systems validate the proposed method’s effectiveness.
期刊介绍:
Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.