{"title":"Nonlinear dynamics of ball vibration absorber considering stability, stationarity and rolling-condition boundaries","authors":"Š. Dyk, R. Bulín, J. Rendl","doi":"10.1016/j.jsv.2025.119265","DOIUrl":null,"url":null,"abstract":"<div><div>The paper presents a detailed nonlinear analysis of a ball vibration absorber (BVA), which consists of a harmonic oscillator with a spherical cavity and a rolling ball as an absorber. Frequency response curves are calculated using the harmonic balance method and pseudo arc length continuation, and stability is assessed using stability analysis applied to modulation equations. This is particularly important at higher excitation amplitudes where the modulation equations provide information on the presence of strongly modulated response regimes. Codimension-2 continuation is used to identify the onset of instability and non-stationary regions with respect to all key design parameters. The study highlights the critical role of the rolling and contact conditions in maintaining the validity of the solution and provides conditions for their satisfaction. The results provide valuable insights into the non-linear dynamic behaviour of the BVA, revealing its effectiveness in vibration reduction and its limitations due to parameter selection and design constraints.</div></div>","PeriodicalId":17233,"journal":{"name":"Journal of Sound and Vibration","volume":"618 ","pages":"Article 119265"},"PeriodicalIF":4.3000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sound and Vibration","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022460X25003396","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The paper presents a detailed nonlinear analysis of a ball vibration absorber (BVA), which consists of a harmonic oscillator with a spherical cavity and a rolling ball as an absorber. Frequency response curves are calculated using the harmonic balance method and pseudo arc length continuation, and stability is assessed using stability analysis applied to modulation equations. This is particularly important at higher excitation amplitudes where the modulation equations provide information on the presence of strongly modulated response regimes. Codimension-2 continuation is used to identify the onset of instability and non-stationary regions with respect to all key design parameters. The study highlights the critical role of the rolling and contact conditions in maintaining the validity of the solution and provides conditions for their satisfaction. The results provide valuable insights into the non-linear dynamic behaviour of the BVA, revealing its effectiveness in vibration reduction and its limitations due to parameter selection and design constraints.
期刊介绍:
The Journal of Sound and Vibration (JSV) is an independent journal devoted to the prompt publication of original papers, both theoretical and experimental, that provide new information on any aspect of sound or vibration. There is an emphasis on fundamental work that has potential for practical application.
JSV was founded and operates on the premise that the subject of sound and vibration requires a journal that publishes papers of a high technical standard across the various subdisciplines, thus facilitating awareness of techniques and discoveries in one area that may be applicable in others.