Enhancing the performance of double-flush riveted joints through hybridization with adhesive bonding

IF 3.8 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
João M.B. Alpendre , Pedro M.S. Rosado , Rui F.V. Sampaio , João P.M. Pragana , Ivo M.F. Bragança , Carlos M.A. Silva , Paulo A.F. Martins
{"title":"Enhancing the performance of double-flush riveted joints through hybridization with adhesive bonding","authors":"João M.B. Alpendre ,&nbsp;Pedro M.S. Rosado ,&nbsp;Rui F.V. Sampaio ,&nbsp;João P.M. Pragana ,&nbsp;Ivo M.F. Bragança ,&nbsp;Carlos M.A. Silva ,&nbsp;Paulo A.F. Martins","doi":"10.1016/j.jajp.2025.100324","DOIUrl":null,"url":null,"abstract":"<div><div>This paper explores the potential to enhance the mechanical performance of joints created through a new joining-by-forming technique called hybrid double-flush riveting. To achieve this, adhesive bonding is used to form hybrid lap joints with superior mechanical properties. The study focuses on high-strength steel sheets and starts by identifying the appropriate surface conditions necessary for producing strong adhesive-bonded joints. A similar strategy is applied to construct double-flush riveted joints, focusing on the geometric variables involved in the process. Hybrid joints are then created by integrating adhesive bonding with double-flush riveting, with the second carried out before or after curing is completed. The experimental development is supported by finite element analysis conducted with an in-house computer program.</div><div>The mechanical performance of the hybrid joints is compared to that of purely adhesive-bonded and conventionally double-flush riveted joints through shear and peel destructive testing. Results demonstrate that hybrid joints ultimately provide greater joint strength for both solicitations. This allows showcasing the hybridization of double-flush riveting with adhesive bonding as an effective solution for applications where joint strength and continuity are essential.</div></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"12 ","pages":"Article 100324"},"PeriodicalIF":3.8000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Joining Processes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666330925000457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper explores the potential to enhance the mechanical performance of joints created through a new joining-by-forming technique called hybrid double-flush riveting. To achieve this, adhesive bonding is used to form hybrid lap joints with superior mechanical properties. The study focuses on high-strength steel sheets and starts by identifying the appropriate surface conditions necessary for producing strong adhesive-bonded joints. A similar strategy is applied to construct double-flush riveted joints, focusing on the geometric variables involved in the process. Hybrid joints are then created by integrating adhesive bonding with double-flush riveting, with the second carried out before or after curing is completed. The experimental development is supported by finite element analysis conducted with an in-house computer program.
The mechanical performance of the hybrid joints is compared to that of purely adhesive-bonded and conventionally double-flush riveted joints through shear and peel destructive testing. Results demonstrate that hybrid joints ultimately provide greater joint strength for both solicitations. This allows showcasing the hybridization of double-flush riveting with adhesive bonding as an effective solution for applications where joint strength and continuity are essential.
通过与胶粘接的杂交,提高双平头铆接接头的性能
本文探讨了通过一种称为混合双冲铆接的新型成形连接技术来提高接头机械性能的潜力。为了实现这一点,使用粘合剂粘合形成具有优越机械性能的混合搭接。该研究的重点是高强度钢板,并从确定生产强粘合剂粘合接头所需的适当表面条件开始。一个类似的策略应用于构建双冲铆接接头,重点是在过程中涉及的几何变量。然后通过将胶粘接与双侧铆接相结合来创建混合接头,第二次铆接在固化完成之前或之后进行。实验开发由内部计算机程序进行的有限元分析支持。通过剪切和剥离破坏试验,将混合接头的力学性能与纯胶粘接和常规双冲铆接进行了比较。结果表明,混合节理最终为两种工况提供了更高的节理强度。这可以展示双冲铆与粘合剂粘合的杂交,作为接缝强度和连续性至关重要的应用的有效解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.10
自引率
9.80%
发文量
58
审稿时长
44 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信