{"title":"Efficient isoprimeverose production using an enzyme cocktail from engineered Aspergillus oryzae and yeast-assisted purification","authors":"Satoshi Wakai , Nanami Nakashima , Hiroko Tsutsumi , Yoji Hata , Fahmi Baihaqqi , Akihiko Kondo , Chiaki Ogino","doi":"10.1016/j.enzmictec.2025.110698","DOIUrl":null,"url":null,"abstract":"<div><div><em>Aspergillus oryzae</em> is a filamentous fungus that possesses various types of carbohydrate -degrading enzymes. Among these, isoprimeverose-producing enzyme (IpeA), acts on a key component of the plant cell wall structure, xyloglucan, to catalyze the release of isoprimeverose — a rare disaccharide that is expected to possess valuable prebiotics properties. Despite these expectations, however, a process for the effective production of isoprimeverose from the xyloglucan still requires further development for commercial-level application. A complicating factor for the lack of such a valuable process is that plant-derived xyloglucan is often modified with other sugars such as galactose and arabinose. Therefore, the effective production of isoprimeverose requires a cooperative form of degradation that must utilize different enzymes. In this study, we genetically engineered two <em>A. oryzae</em> strains — one produces IpeA and the other produces endoglucanase. The two strains were cultivated separately, and an enzyme cocktail was prepared using their respective culture supernatants. This enzyme cocktail successfully produced isoprimeverose from tamarind xyloglucan and tamarind seed gum. Approximately 14 g/L of isoprimeverose was obtained, which corresponds to a theoretical conversion rate of over 90 %. Although glucose and galactose remained in the reaction solution after enzymatic degradation, these by-products could be easily removed via treatment with <em>Saccharomyces cerevisiae</em>. Our developed process, which mimics traditional Japanese sake fermentation using <em>A. oryzae</em> and <em>S. cerevisiae</em>, has enabled efficient production of isoprimeverose.</div></div>","PeriodicalId":11770,"journal":{"name":"Enzyme and Microbial Technology","volume":"190 ","pages":"Article 110698"},"PeriodicalIF":3.4000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enzyme and Microbial Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141022925001188","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aspergillus oryzae is a filamentous fungus that possesses various types of carbohydrate -degrading enzymes. Among these, isoprimeverose-producing enzyme (IpeA), acts on a key component of the plant cell wall structure, xyloglucan, to catalyze the release of isoprimeverose — a rare disaccharide that is expected to possess valuable prebiotics properties. Despite these expectations, however, a process for the effective production of isoprimeverose from the xyloglucan still requires further development for commercial-level application. A complicating factor for the lack of such a valuable process is that plant-derived xyloglucan is often modified with other sugars such as galactose and arabinose. Therefore, the effective production of isoprimeverose requires a cooperative form of degradation that must utilize different enzymes. In this study, we genetically engineered two A. oryzae strains — one produces IpeA and the other produces endoglucanase. The two strains were cultivated separately, and an enzyme cocktail was prepared using their respective culture supernatants. This enzyme cocktail successfully produced isoprimeverose from tamarind xyloglucan and tamarind seed gum. Approximately 14 g/L of isoprimeverose was obtained, which corresponds to a theoretical conversion rate of over 90 %. Although glucose and galactose remained in the reaction solution after enzymatic degradation, these by-products could be easily removed via treatment with Saccharomyces cerevisiae. Our developed process, which mimics traditional Japanese sake fermentation using A. oryzae and S. cerevisiae, has enabled efficient production of isoprimeverose.
期刊介绍:
Enzyme and Microbial Technology is an international, peer-reviewed journal publishing original research and reviews, of biotechnological significance and novelty, on basic and applied aspects of the science and technology of processes involving the use of enzymes, micro-organisms, animal cells and plant cells.
We especially encourage submissions on:
Biocatalysis and the use of Directed Evolution in Synthetic Biology and Biotechnology
Biotechnological Production of New Bioactive Molecules, Biomaterials, Biopharmaceuticals, and Biofuels
New Imaging Techniques and Biosensors, especially as applicable to Healthcare and Systems Biology
New Biotechnological Approaches in Genomics, Proteomics and Metabolomics
Metabolic Engineering, Biomolecular Engineering and Nanobiotechnology
Manuscripts which report isolation, purification, immobilization or utilization of organisms or enzymes which are already well-described in the literature are not suitable for publication in EMT, unless their primary purpose is to report significant new findings or approaches which are of broad biotechnological importance. Similarly, manuscripts which report optimization studies on well-established processes are inappropriate. EMT does not accept papers dealing with mathematical modeling unless they report significant, new experimental data.