{"title":"Resource allocation algorithm for downlink secure transmission in wireless EH cooperative networks with idle relay-assisted jamming","authors":"Xintong Zhou , Kun Xiao , Feng Ke","doi":"10.1016/j.dcan.2024.07.006","DOIUrl":null,"url":null,"abstract":"<div><div>In wireless Energy Harvesting (EH) cooperative networks, we investigate the problem of secure energy-saving resource allocation for downlink physical layer security transmission. Initially, we establish a model for a multi-relay cooperative network incorporating wireless energy harvesting, spectrum sharing, and system power constraints, focusing on physical layer security transmission in the presence of eavesdropping nodes. In this model, the source node transmits signals while injecting Artificial Noise (AN) to mitigate eavesdropping risks, and an idle relay can act as a jamming node to assist in this process. Based on this model, we formulate an optimization problem for maximizing system secure harvesting energy efficiency, this problem integrates constraints on total power, bandwidth, and AN allocation. We proceed by conducting a mathematical analysis of the optimization problem, deriving optimal solutions for secure energy-saving resource allocation, this includes strategies for power allocation at the source and relay nodes, bandwidth allocation among relays, and power splitting for the energy harvesting node. Thus, we propose a secure resource allocation algorithm designed to maximize secure harvesting energy efficiency. Finally, we validate the correctness of the theoretical derivation through Monte Carlo simulations, discussing the impact of parameters such as legitimate channel gain, power splitting factor, and the number of relays on secure harvesting energy efficiency of the system. The simulation results show that the proposed secure energy-saving resource allocation algorithm effectively enhances the security performance of the system.</div></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":"11 3","pages":"Pages 829-836"},"PeriodicalIF":7.5000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352864824000919","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In wireless Energy Harvesting (EH) cooperative networks, we investigate the problem of secure energy-saving resource allocation for downlink physical layer security transmission. Initially, we establish a model for a multi-relay cooperative network incorporating wireless energy harvesting, spectrum sharing, and system power constraints, focusing on physical layer security transmission in the presence of eavesdropping nodes. In this model, the source node transmits signals while injecting Artificial Noise (AN) to mitigate eavesdropping risks, and an idle relay can act as a jamming node to assist in this process. Based on this model, we formulate an optimization problem for maximizing system secure harvesting energy efficiency, this problem integrates constraints on total power, bandwidth, and AN allocation. We proceed by conducting a mathematical analysis of the optimization problem, deriving optimal solutions for secure energy-saving resource allocation, this includes strategies for power allocation at the source and relay nodes, bandwidth allocation among relays, and power splitting for the energy harvesting node. Thus, we propose a secure resource allocation algorithm designed to maximize secure harvesting energy efficiency. Finally, we validate the correctness of the theoretical derivation through Monte Carlo simulations, discussing the impact of parameters such as legitimate channel gain, power splitting factor, and the number of relays on secure harvesting energy efficiency of the system. The simulation results show that the proposed secure energy-saving resource allocation algorithm effectively enhances the security performance of the system.
期刊介绍:
Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus.
In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field.
In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.