Ziyang Long , Quanzheng Li , Chengliang Zhang , Haifeng Shi
{"title":"BiVO4/WO3−x S-scheme heterojunctions with amplified internal electric field for boosting photothermal-catalytic activity","authors":"Ziyang Long , Quanzheng Li , Chengliang Zhang , Haifeng Shi","doi":"10.1016/j.actphy.2025.100122","DOIUrl":null,"url":null,"abstract":"<div><div>Modulating the internal electric field (IEF) remains a critical challenge for S-scheme heterojunction photocatalysts. The BiVO<sub>4</sub>/WO<sub>3−<em>x</em></sub> S-scheme heterojunctions were successfully prepared to purify the wastewater environment where TC and Cr (VI) coexist under visible light illumination. The BiVO<sub>4</sub>/WO<sub>3−<em>x</em></sub> with 10 wt% WO<sub>3−<em>x</em></sub> (BVO/WO<sub>3−<em>x</em></sub>-10) demonstrated superior photocatalytic efficiency, which could degrade 78.5 % of TC and reduce 85.3 % of Cr(VI) in 60 min. The photocatalytic activity of BVO/WO<sub>3−<em>x</em></sub>−10 displayed enhanced removal efficiency in the mixed system. The removal ability of TC and Cr (Ⅵ) was increased by 1.29 and 1.32 times, respectively. Based on IR thermography measurements, the elevated reaction system temperatures were ascribed to the photothermal effect of WO<sub>3−<em>x</em></sub>. Oxygen vacancies (OVs) could amplify the energy band difference between WO<sub>3−<em>x</em></sub> and BiVO<sub>4</sub>, which strengthens the IEF and accelerates the separation of carriers. A detailed degradation pathway and intermediate toxicity were carried out using the mung bean experiment and the results of the LC−MS. In general, this work provided new insights for regulating IEF to enhance the degradation efficiency in mixed wastewater and the carriers separation in the S-scheme heterojunction of the photothermal-catalytic system.</div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"41 10","pages":"Article 100122"},"PeriodicalIF":13.5000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"物理化学学报","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1000681825000785","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Modulating the internal electric field (IEF) remains a critical challenge for S-scheme heterojunction photocatalysts. The BiVO4/WO3−x S-scheme heterojunctions were successfully prepared to purify the wastewater environment where TC and Cr (VI) coexist under visible light illumination. The BiVO4/WO3−x with 10 wt% WO3−x (BVO/WO3−x-10) demonstrated superior photocatalytic efficiency, which could degrade 78.5 % of TC and reduce 85.3 % of Cr(VI) in 60 min. The photocatalytic activity of BVO/WO3−x−10 displayed enhanced removal efficiency in the mixed system. The removal ability of TC and Cr (Ⅵ) was increased by 1.29 and 1.32 times, respectively. Based on IR thermography measurements, the elevated reaction system temperatures were ascribed to the photothermal effect of WO3−x. Oxygen vacancies (OVs) could amplify the energy band difference between WO3−x and BiVO4, which strengthens the IEF and accelerates the separation of carriers. A detailed degradation pathway and intermediate toxicity were carried out using the mung bean experiment and the results of the LC−MS. In general, this work provided new insights for regulating IEF to enhance the degradation efficiency in mixed wastewater and the carriers separation in the S-scheme heterojunction of the photothermal-catalytic system.