{"title":"Learning a Robust Fuzzy Cognitive Map Based on Bubble Entropy Fusion With SCAD Regularization for Solar Power Generation","authors":"Shoujiang Li;Jianzhou Wang;Hui Zhang;Yong Liang","doi":"10.1109/TSTE.2025.3537612","DOIUrl":null,"url":null,"abstract":"Accurate and reliable solar photovoltaic (PV) power forecasting are crucial for cost-effective resource planning and stable operation of smart grids. However, current methods are affected by the intermittent, non-stationary and stochastic nature of solar energy and thus cannot satisfy the requirement of high-precision forecasting. To this end, we propose a fuzzy cognitive map (FCM) forecasting method based on bubble entropy and smoothly clipped absolute deviation (SCAD) regularization, called BesFCM. This method first utilizes bubble entropy to fuse two mode decomposition methods to improve the representation of PV data to capture effective features with significant stability and discriminative ability, then employs a FCM with a combination of fuzzy logic, neural networks, and expert systems to model solar PV power generation, and finally develops a high order FCM learning method based on SCAD regularization to alleviate the overfitting problem, enhancing the robustness and generalization ability of forecasting. Experimental results demonstrate that the BesFCM achieves the best overall performance on PV power datasets from multiple sampling intervals in multiple regions of Belgium compared to multiple state-of-the-art baselines, validating the effectiveness for solar power generation forecasting, providing support and reference for improving the quality of smart grid dispatch and reducing spare capacity reserves.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"16 3","pages":"1837-1848"},"PeriodicalIF":10.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10869385/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate and reliable solar photovoltaic (PV) power forecasting are crucial for cost-effective resource planning and stable operation of smart grids. However, current methods are affected by the intermittent, non-stationary and stochastic nature of solar energy and thus cannot satisfy the requirement of high-precision forecasting. To this end, we propose a fuzzy cognitive map (FCM) forecasting method based on bubble entropy and smoothly clipped absolute deviation (SCAD) regularization, called BesFCM. This method first utilizes bubble entropy to fuse two mode decomposition methods to improve the representation of PV data to capture effective features with significant stability and discriminative ability, then employs a FCM with a combination of fuzzy logic, neural networks, and expert systems to model solar PV power generation, and finally develops a high order FCM learning method based on SCAD regularization to alleviate the overfitting problem, enhancing the robustness and generalization ability of forecasting. Experimental results demonstrate that the BesFCM achieves the best overall performance on PV power datasets from multiple sampling intervals in multiple regions of Belgium compared to multiple state-of-the-art baselines, validating the effectiveness for solar power generation forecasting, providing support and reference for improving the quality of smart grid dispatch and reducing spare capacity reserves.
期刊介绍:
The IEEE Transactions on Sustainable Energy serves as a pivotal platform for sharing groundbreaking research findings on sustainable energy systems, with a focus on their seamless integration into power transmission and/or distribution grids. The journal showcases original research spanning the design, implementation, grid-integration, and control of sustainable energy technologies and systems. Additionally, the Transactions warmly welcomes manuscripts addressing the design, implementation, and evaluation of power systems influenced by sustainable energy systems and devices.