Excitation Energy Transfer between Porphyrin Dyes on a Clay Surface: A Study Employing Multifidelity Machine Learning

IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES
Dongyu Lyu, Vivin Vinod, Matthias Holzenkamp, Yannick Marcel Holtkamp, Sayan Maity, Carlos R. Salazar, Ulrich Kleinekathöfer, Peter Zaspel
{"title":"Excitation Energy Transfer between Porphyrin Dyes on a Clay Surface: A Study Employing Multifidelity Machine Learning","authors":"Dongyu Lyu, Vivin Vinod, Matthias Holzenkamp, Yannick Marcel Holtkamp, Sayan Maity, Carlos R. Salazar, Ulrich Kleinekathöfer, Peter Zaspel","doi":"10.1002/adts.202500271","DOIUrl":null,"url":null,"abstract":"Natural light-harvesting antenna complexes efficiently capture solar energy mostly using chlorophyll molecules, i.e., magnesium porphyrin pigments, embedded in a protein matrix. Inspired by this natural configuration, artificial clay-porphyrin antenna structures have experimentally been synthesized and demonstrated to exhibit remarkable excitation energy transfer properties. The current study presents a computational design and simulations of a synthetic light-harvesting system that emulates natural mechanisms by arranging cationic free-base porphyrin molecules on an anionic clay surface. The transfer of excitation energy among the porphyrin dyes is investigated using a multiscale quantum mechanics/molecular mechanics (QM/MM) approach based on the semi-empirical density functional-based tight-binding theory for the ground state dynamics. To improve the accuracy of the results, an innovative multifidelity machine learning approach is incorporated, which allows the prediction of excitation energies at the numerically demanding time-dependent density functional theory level together with the def2-SVP basis set. This approach is applied to an extensive dataset of 640 k geometries for the 90-atom porphyrin structures, facilitating a thorough analysis of the excitation energy diffusion among the porphyrin molecules adsorbed to the clay surface. The insights gained from this study, inspired by natural light-harvesting complexes, demonstrate the potential of porphyrin-clay systems as effective energy transfer systems.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"1 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202500271","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Natural light-harvesting antenna complexes efficiently capture solar energy mostly using chlorophyll molecules, i.e., magnesium porphyrin pigments, embedded in a protein matrix. Inspired by this natural configuration, artificial clay-porphyrin antenna structures have experimentally been synthesized and demonstrated to exhibit remarkable excitation energy transfer properties. The current study presents a computational design and simulations of a synthetic light-harvesting system that emulates natural mechanisms by arranging cationic free-base porphyrin molecules on an anionic clay surface. The transfer of excitation energy among the porphyrin dyes is investigated using a multiscale quantum mechanics/molecular mechanics (QM/MM) approach based on the semi-empirical density functional-based tight-binding theory for the ground state dynamics. To improve the accuracy of the results, an innovative multifidelity machine learning approach is incorporated, which allows the prediction of excitation energies at the numerically demanding time-dependent density functional theory level together with the def2-SVP basis set. This approach is applied to an extensive dataset of 640 k geometries for the 90-atom porphyrin structures, facilitating a thorough analysis of the excitation energy diffusion among the porphyrin molecules adsorbed to the clay surface. The insights gained from this study, inspired by natural light-harvesting complexes, demonstrate the potential of porphyrin-clay systems as effective energy transfer systems.

Abstract Image

粘土表面卟啉染料之间的激发态能转移:采用多保真机器学习的研究
自然光收集天线复合物主要利用嵌入在蛋白质基质中的叶绿素分子,即卟啉镁色素,有效地捕获太阳能。受这种自然结构的启发,人造粘土-卟啉天线结构已被实验合成并证明具有显著的激发能转移特性。目前的研究提出了一种合成光收集系统的计算设计和模拟,该系统通过在阴离子粘土表面上排列阳离子游离基卟啉分子来模拟自然机制。基于基于半经验密度泛函数的基态动力学紧密结合理论,采用多尺度量子力学/分子力学方法研究了卟啉染料之间激发能的传递。为了提高结果的准确性,采用了一种创新的多保真度机器学习方法,该方法允许在数值要求的时间依赖密度泛函理论水平上与def2-SVP基集一起预测激发能。该方法应用于90原子卟啉结构的640 k几何形状的广泛数据集,有助于对吸附在粘土表面的卟啉分子之间的激发能扩散进行彻底分析。从这项研究中获得的见解,受到自然光收集复合物的启发,证明了卟啉-粘土系统作为有效能量传递系统的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Theory and Simulations
Advanced Theory and Simulations Multidisciplinary-Multidisciplinary
CiteScore
5.50
自引率
3.00%
发文量
221
期刊介绍: Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including: materials, chemistry, condensed matter physics engineering, energy life science, biology, medicine atmospheric/environmental science, climate science planetary science, astronomy, cosmology method development, numerical methods, statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信