Design of Thermodynamically Stable Lead-Free Cs2InCuCl6 Double Perovskite Solar Cells

IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES
Luong Thien Bao Pham, Naveen Kumar Elumalai, Pranta Barua, Kiran Sreedhar Ram, Hooman Mehdizadeh-Rad, Kannoorpatti Krishnan
{"title":"Design of Thermodynamically Stable Lead-Free Cs2InCuCl6 Double Perovskite Solar Cells","authors":"Luong Thien Bao Pham, Naveen Kumar Elumalai, Pranta Barua, Kiran Sreedhar Ram, Hooman Mehdizadeh-Rad, Kannoorpatti Krishnan","doi":"10.1002/adts.202500258","DOIUrl":null,"url":null,"abstract":"In this work, the potential of lead-free double perovskite Cs<sub>2</sub>InCuCl<sub>6</sub> (CICC) is investigated as a solar cell absorber. CICC exhibits a direct bandgap of 1.1 eV and exceptional thermodynamic stability with high decomposition enthalpies (0.4–67.4 meV atom<sup>−1</sup>). Utilizing Solar Cell Capacitance Simulator software (SCAPS)-1D simulations, device architecture, including material selection, layer thicknesses, and doping concentrations, are systematically developed and optimized achieving a high open-circuit voltage (<i>V</i><sub>oc</sub>) of 0.8 V, approaching the Shockley–Queisser limit, an excellent short-circuit current density (<i>J</i><sub>sc</sub>) of 26.20 mA cm<sup>−2</sup>, and a fill factor (FF) of 87.57%. This optimization leads to a record power conversion efficiency of 19.77% with grounds for further enhancement. The key highlight of this study is the incorporation of Mott–Schottky (MS) analysis within the simulation framework, providing unprecedented insights into interfacial charge transport and its impact on device performance. This work paves the way for advanced interface engineering in lead-free perovskite solar cells, offering a roadmap for realizing highly efficient and stable devices.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"16 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202500258","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, the potential of lead-free double perovskite Cs2InCuCl6 (CICC) is investigated as a solar cell absorber. CICC exhibits a direct bandgap of 1.1 eV and exceptional thermodynamic stability with high decomposition enthalpies (0.4–67.4 meV atom−1). Utilizing Solar Cell Capacitance Simulator software (SCAPS)-1D simulations, device architecture, including material selection, layer thicknesses, and doping concentrations, are systematically developed and optimized achieving a high open-circuit voltage (Voc) of 0.8 V, approaching the Shockley–Queisser limit, an excellent short-circuit current density (Jsc) of 26.20 mA cm−2, and a fill factor (FF) of 87.57%. This optimization leads to a record power conversion efficiency of 19.77% with grounds for further enhancement. The key highlight of this study is the incorporation of Mott–Schottky (MS) analysis within the simulation framework, providing unprecedented insights into interfacial charge transport and its impact on device performance. This work paves the way for advanced interface engineering in lead-free perovskite solar cells, offering a roadmap for realizing highly efficient and stable devices.

Abstract Image

热稳定无铅Cs2InCuCl6双钙钛矿太阳能电池的设计
本文研究了无铅双钙钛矿Cs2InCuCl6 (CICC)作为太阳能电池吸收剂的潜力。CICC具有1.1 eV的直接带隙和优异的热力学稳定性,具有较高的分解焓(0.4-67.4 meV原子−1)。利用太阳能电池电容模拟器软件(SCAPS)-1D模拟,系统地开发和优化了器件结构,包括材料选择,层厚度和掺杂浓度,实现了0.8 V的高开路电压(Voc),接近Shockley-Queisser极限,26.20 mA cm−2的优良短路电流密度(Jsc)和87.57%的填充因子(FF)。这一优化导致创纪录的19.77%的功率转换效率,并有进一步提高的基础。本研究的关键亮点是在模拟框架内结合了莫特-肖特基(MS)分析,为界面电荷传输及其对器件性能的影响提供了前所未有的见解。这项工作为无铅钙钛矿太阳能电池的先进界面工程铺平了道路,为实现高效稳定的器件提供了路线图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Theory and Simulations
Advanced Theory and Simulations Multidisciplinary-Multidisciplinary
CiteScore
5.50
自引率
3.00%
发文量
221
期刊介绍: Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including: materials, chemistry, condensed matter physics engineering, energy life science, biology, medicine atmospheric/environmental science, climate science planetary science, astronomy, cosmology method development, numerical methods, statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信