Hui Li, Zhiwei Zhang, Lianke Zhang, Hualiang Ni, Haiying Qin, Jing Zhang, Hong Zhong Chi, Jun-Jing He
{"title":"Electrocatalytic Activity of PtAuPd/C Nano Multi-Principal Element Alloy Catalyst towards Oxygen Reduction Reaction","authors":"Hui Li, Zhiwei Zhang, Lianke Zhang, Hualiang Ni, Haiying Qin, Jing Zhang, Hong Zhong Chi, Jun-Jing He","doi":"10.1039/d5cp01935d","DOIUrl":null,"url":null,"abstract":"Developing highly stable, low-platinum electrocatalysts is crucial for advancing fuel cell technology. In this study, a PtAuPd/C nano multi-principal element alloy catalyst was synthesized by a carbothermal shock method. The average particle size of the PtAuPd/C alloy nanoparticles is around 2.2 nm and the PtAuPd/C exhibits superior catalytic activity and stability towards the oxygen reduction reaction (ORR) compared to the binary alloy catalysts (PtAu/C and PtPd/C). The PtAuPd/C displays a half-wave potential (E1/2) of 0.837 V and a Tafel slope of 53.1 mV dec-1. It demonstrates only a minimal E1/2 loss of 3.5 mV after 40,000 cycles and a mass activity retention rate of 78.2%. When employed as a cathode catalyst within a direct borohydride fuel cell, the PtAuPd/C catalyst exhibits a maximum power density of 438.3 mW cm-2. This improved ORR activity is attributed to synergistic electronic effects and modified surface strain within the PtAuPd nanoalloy.","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":"16 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5cp01935d","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Developing highly stable, low-platinum electrocatalysts is crucial for advancing fuel cell technology. In this study, a PtAuPd/C nano multi-principal element alloy catalyst was synthesized by a carbothermal shock method. The average particle size of the PtAuPd/C alloy nanoparticles is around 2.2 nm and the PtAuPd/C exhibits superior catalytic activity and stability towards the oxygen reduction reaction (ORR) compared to the binary alloy catalysts (PtAu/C and PtPd/C). The PtAuPd/C displays a half-wave potential (E1/2) of 0.837 V and a Tafel slope of 53.1 mV dec-1. It demonstrates only a minimal E1/2 loss of 3.5 mV after 40,000 cycles and a mass activity retention rate of 78.2%. When employed as a cathode catalyst within a direct borohydride fuel cell, the PtAuPd/C catalyst exhibits a maximum power density of 438.3 mW cm-2. This improved ORR activity is attributed to synergistic electronic effects and modified surface strain within the PtAuPd nanoalloy.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.