{"title":"Copper-Catalyzed Highly Efficient and Asymmetric Allylic C-H Oxidation of 3-Aryl-Substituted Terminal Alkenes.","authors":"Yibo Zhou,Pinhong Chen,Guosheng Liu","doi":"10.1021/jacs.5c05382","DOIUrl":null,"url":null,"abstract":"Asymmetric allylic C(sp3)-H oxidation of terminal alkenes provides a streamlined process for accessing allylic alcohols and their derivatives; however, it represents a long-standing challenge in the field for several decades. Herein, we disclosed a copper-catalyzed approach for the enantioselective allylic C(sp3)-H oxidation of terminal alkenes, facilitated by introducing a sterically bulky B2Im(C6F5)6 anion. Notably, a wide range of aryl-substituted terminal alkenes were used as limiting reagents, delivering various products with excellent enantioselectivity and regioselectivity (up to 99% ee, >20:1 b/l). Mechanistically, the bulky counteranion was found to be essential for achieving excellent enantioselective control and high catalytic efficiency.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"12 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.5c05382","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Asymmetric allylic C(sp3)-H oxidation of terminal alkenes provides a streamlined process for accessing allylic alcohols and their derivatives; however, it represents a long-standing challenge in the field for several decades. Herein, we disclosed a copper-catalyzed approach for the enantioselective allylic C(sp3)-H oxidation of terminal alkenes, facilitated by introducing a sterically bulky B2Im(C6F5)6 anion. Notably, a wide range of aryl-substituted terminal alkenes were used as limiting reagents, delivering various products with excellent enantioselectivity and regioselectivity (up to 99% ee, >20:1 b/l). Mechanistically, the bulky counteranion was found to be essential for achieving excellent enantioselective control and high catalytic efficiency.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.