{"title":"Progress and prospects in metabolic engineering approaches for isoprenoid biosynthesis in microalgae","authors":"Sonia Mohamadnia, Borja Valverde-Pérez, Omid Tavakoli, Irini Angelidaki","doi":"10.1186/s13068-025-02665-y","DOIUrl":null,"url":null,"abstract":"<div><p>Isoprenoids constitute a large and various number of bio-compounds, with many profitable applications in pharmaceutical, nutraceutical, and industrial fields. The complexity of isoprenoid molecules leads to a challenging, expensive, and environmentally unfriendly chemical synthesis of these metabolites. In addition, the awareness and desire of many consumers for products generated by natural microbial processes has increased recently. Metabolic engineering tools and synthetic biology strategies have been used as a means for the enhancement and optimization of the natural isoprenoid biosynthetic pathways of wild strains. Microalgae as production organisms have been manipulated for the bioproduction of diverse isoprenoids. Particularly when cultivated in unsuitable conditions (such as wastewater, unbalanced nutritional sources, and distinct environmental conditions), microalgae can adjust their metabolic pathways and generate compounds with significant technological potential. Several metabolic engineering approaches have been developed, modifying the metabolic pathways in microalgae to redirect the flow of carbon toward isoprenoid biosynthesis, including pathway engineering, strain improvement, and synthetic biology. In this review, some beneficial features of these high-value metabolites are summarized. Besides, recent advancements in metabolic engineering approaches for the biosynthesis of isoprenoids are discussed in detail. At last, the viewpoints and challenges for the biosynthesis of novel compositions with isoprene units in the microalgae are also included.</p></div>","PeriodicalId":494,"journal":{"name":"Biotechnology for Biofuels","volume":"18 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12175399/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology for Biofuels","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1186/s13068-025-02665-y","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Isoprenoids constitute a large and various number of bio-compounds, with many profitable applications in pharmaceutical, nutraceutical, and industrial fields. The complexity of isoprenoid molecules leads to a challenging, expensive, and environmentally unfriendly chemical synthesis of these metabolites. In addition, the awareness and desire of many consumers for products generated by natural microbial processes has increased recently. Metabolic engineering tools and synthetic biology strategies have been used as a means for the enhancement and optimization of the natural isoprenoid biosynthetic pathways of wild strains. Microalgae as production organisms have been manipulated for the bioproduction of diverse isoprenoids. Particularly when cultivated in unsuitable conditions (such as wastewater, unbalanced nutritional sources, and distinct environmental conditions), microalgae can adjust their metabolic pathways and generate compounds with significant technological potential. Several metabolic engineering approaches have been developed, modifying the metabolic pathways in microalgae to redirect the flow of carbon toward isoprenoid biosynthesis, including pathway engineering, strain improvement, and synthetic biology. In this review, some beneficial features of these high-value metabolites are summarized. Besides, recent advancements in metabolic engineering approaches for the biosynthesis of isoprenoids are discussed in detail. At last, the viewpoints and challenges for the biosynthesis of novel compositions with isoprene units in the microalgae are also included.
期刊介绍:
Biotechnology for Biofuels is an open access peer-reviewed journal featuring high-quality studies describing technological and operational advances in the production of biofuels, chemicals and other bioproducts. The journal emphasizes understanding and advancing the application of biotechnology and synergistic operations to improve plants and biological conversion systems for the biological production of these products from biomass, intermediates derived from biomass, or CO2, as well as upstream or downstream operations that are integral to biological conversion of biomass.
Biotechnology for Biofuels focuses on the following areas:
• Development of terrestrial plant feedstocks
• Development of algal feedstocks
• Biomass pretreatment, fractionation and extraction for biological conversion
• Enzyme engineering, production and analysis
• Bacterial genetics, physiology and metabolic engineering
• Fungal/yeast genetics, physiology and metabolic engineering
• Fermentation, biocatalytic conversion and reaction dynamics
• Biological production of chemicals and bioproducts from biomass
• Anaerobic digestion, biohydrogen and bioelectricity
• Bioprocess integration, techno-economic analysis, modelling and policy
• Life cycle assessment and environmental impact analysis