A hybrid Bi-LSTM model for data-driven maintenance planning.

自主智能系统(英文) Pub Date : 2025-01-01 Epub Date: 2025-06-06 DOI:10.1007/s43684-025-00099-9
Alexandros Noussis, Ryan O'Neil, Ahmed Saif, Abdelhakim Khatab, Claver Diallo
{"title":"A hybrid Bi-LSTM model for data-driven maintenance planning.","authors":"Alexandros Noussis, Ryan O'Neil, Ahmed Saif, Abdelhakim Khatab, Claver Diallo","doi":"10.1007/s43684-025-00099-9","DOIUrl":null,"url":null,"abstract":"<p><p>Modern industries dependent on reliable asset operation under constrained resources employ intelligent maintenance methods to maximize efficiency. However, classical maintenance methods rely on assumed lifetime distributions and suffer from estimation errors and computational complexity. The advent of Industry 4.0 has increased the use of sensors for monitoring systems, while deep learning (DL) models have allowed for accurate system health predictions, enabling data-driven maintenance planning. Most intelligent maintenance literature has used DL models solely for remaining useful life (RUL) point predictions, and a substantial gap exists in further using predictions to inform maintenance plan optimization. The few existing studies that have attempted to bridge this gap suffer from having used simple system configurations and non-scalable models. Hence, this paper develops a hybrid DL model using Monte Carlo dropout to generate RUL predictions which are used to construct empirical system reliability functions used for the optimization of the selective maintenance problem (SMP). The proposed framework is used to plan maintenance for a mission-oriented series k-out-of-n:G system. Numerical experiments compare the framework's performance against prior SMP methods and highlight its strengths. When minimizing cost, maintenance plans are frequently produced that result in mission survival while avoiding unnecessary repairs. The proposed method is usable in large-scale, complex scenarios and various industrial contexts. The method finds exact solutions while avoiding the need for computationally-intensive parametric reliability functions.</p>","PeriodicalId":71187,"journal":{"name":"自主智能系统(英文)","volume":"5 1","pages":"13"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12175739/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"自主智能系统(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1007/s43684-025-00099-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/6 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Modern industries dependent on reliable asset operation under constrained resources employ intelligent maintenance methods to maximize efficiency. However, classical maintenance methods rely on assumed lifetime distributions and suffer from estimation errors and computational complexity. The advent of Industry 4.0 has increased the use of sensors for monitoring systems, while deep learning (DL) models have allowed for accurate system health predictions, enabling data-driven maintenance planning. Most intelligent maintenance literature has used DL models solely for remaining useful life (RUL) point predictions, and a substantial gap exists in further using predictions to inform maintenance plan optimization. The few existing studies that have attempted to bridge this gap suffer from having used simple system configurations and non-scalable models. Hence, this paper develops a hybrid DL model using Monte Carlo dropout to generate RUL predictions which are used to construct empirical system reliability functions used for the optimization of the selective maintenance problem (SMP). The proposed framework is used to plan maintenance for a mission-oriented series k-out-of-n:G system. Numerical experiments compare the framework's performance against prior SMP methods and highlight its strengths. When minimizing cost, maintenance plans are frequently produced that result in mission survival while avoiding unnecessary repairs. The proposed method is usable in large-scale, complex scenarios and various industrial contexts. The method finds exact solutions while avoiding the need for computationally-intensive parametric reliability functions.

用于数据驱动的维护计划的混合Bi-LSTM模型。
现代工业依赖于资源受限条件下可靠的资产运行,采用智能维护方法实现效率最大化。然而,传统的维护方法依赖于假设的生命周期分布,并且存在估计误差和计算复杂性。工业4.0的出现增加了传感器用于监控系统的使用,而深度学习(DL)模型允许准确的系统健康预测,从而实现数据驱动的维护计划。大多数智能维护文献仅将深度学习模型用于剩余使用寿命(RUL)点预测,并且在进一步使用预测来通知维护计划优化方面存在实质性差距。现有的一些试图弥合这一差距的研究都使用了简单的系统配置和不可伸缩的模型。因此,本文开发了一种使用蒙特卡罗dropout的混合深度学习模型来生成RUL预测,该预测用于构建用于优化选择性维护问题(SMP)的经验系统可靠性函数。提出的框架用于面向任务的系列k-out- n:G系统的维护计划。数值实验将该框架的性能与先前的SMP方法进行了比较,并突出了其优点。在成本最小化的情况下,经常制定维护计划,从而在避免不必要的维修的同时保证任务的生存。该方法适用于大规模、复杂场景和各种工业环境。该方法可以找到精确的解,同时避免了需要大量计算的参数可靠性函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信