{"title":"Cyan Thermal Proteins Derived From Thermal Green Protein.","authors":"Acacia Jurkowski, Dhruv Sitapara, Austin Brown, Samantha Ball, Trey Norman, Anastasia Jones, Jessica Gilbert, Taryn Criblez, Andrew Yates, Shiv Bansal, Natasha M DeVore","doi":"10.1002/prot.70003","DOIUrl":null,"url":null,"abstract":"<p><p>Thermal green protein (TGP) is a consensus derived green fluorescent protein designed with extreme thermostability, high pH and chemical stability, as well as high quantum yield for use in more severe conditions. Our goal is to design a cyan version of TGP that maintains these characteristics. We were able to shift the fluorescence wavelength of TGP from green to cyan creating CTP 0.0 by incorporating a single chromophore mutation, Y67W, but this mutation also decreased the quantum yield to 0.056. Further mutations were incorporated to increase the quantum yield through incorporating hydrogen bonding interactions to the chromophore and to remove a kink present in beta strand seven. These proteins, CTP 0.5 (Y67W I199T) and CTP 1.0 (Y67W I199T W143L E144I P145D S146A), increased the quantum yield to 0.07 and 0.37, respectively and improved stability characteristics. CTP 0.75 incorporated another chromophore mutation into CTP 1.0 (Q66E) to increase the stability characteristics but decreased the quantum yield to 0.22. The CTP 1.0 cyan protein was also compared to mTurquoise2, one of the current best cyan fluorescent proteins based on GFP. CTP 1.0 had comparable chemical stability and improved acid stability. Crystal structures were solved for CTP 0.5 at pH 6.5 (2.00 Å), CTP 1.0 at pH 6.5 (1.70 Å), CTP 1.0 at pH 8.5 (1.60 Å), and CTP 0.75 at pH 7.4 (1.70 Å). Structural analysis of the proteins showed that while improvement to beta strand seven was unsuccessful, the increase in quantum yield is likely due to the incorporation of the T199 residue and subsequent hydrogen bonding interaction improvements with the chromophore.</p>","PeriodicalId":56271,"journal":{"name":"Proteins-Structure Function and Bioinformatics","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteins-Structure Function and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prot.70003","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Thermal green protein (TGP) is a consensus derived green fluorescent protein designed with extreme thermostability, high pH and chemical stability, as well as high quantum yield for use in more severe conditions. Our goal is to design a cyan version of TGP that maintains these characteristics. We were able to shift the fluorescence wavelength of TGP from green to cyan creating CTP 0.0 by incorporating a single chromophore mutation, Y67W, but this mutation also decreased the quantum yield to 0.056. Further mutations were incorporated to increase the quantum yield through incorporating hydrogen bonding interactions to the chromophore and to remove a kink present in beta strand seven. These proteins, CTP 0.5 (Y67W I199T) and CTP 1.0 (Y67W I199T W143L E144I P145D S146A), increased the quantum yield to 0.07 and 0.37, respectively and improved stability characteristics. CTP 0.75 incorporated another chromophore mutation into CTP 1.0 (Q66E) to increase the stability characteristics but decreased the quantum yield to 0.22. The CTP 1.0 cyan protein was also compared to mTurquoise2, one of the current best cyan fluorescent proteins based on GFP. CTP 1.0 had comparable chemical stability and improved acid stability. Crystal structures were solved for CTP 0.5 at pH 6.5 (2.00 Å), CTP 1.0 at pH 6.5 (1.70 Å), CTP 1.0 at pH 8.5 (1.60 Å), and CTP 0.75 at pH 7.4 (1.70 Å). Structural analysis of the proteins showed that while improvement to beta strand seven was unsuccessful, the increase in quantum yield is likely due to the incorporation of the T199 residue and subsequent hydrogen bonding interaction improvements with the chromophore.
期刊介绍:
PROTEINS : Structure, Function, and Bioinformatics publishes original reports of significant experimental and analytic research in all areas of protein research: structure, function, computation, genetics, and design. The journal encourages reports that present new experimental or computational approaches for interpreting and understanding data from biophysical chemistry, structural studies of proteins and macromolecular assemblies, alterations of protein structure and function engineered through techniques of molecular biology and genetics, functional analyses under physiologic conditions, as well as the interactions of proteins with receptors, nucleic acids, or other specific ligands or substrates. Research in protein and peptide biochemistry directed toward synthesizing or characterizing molecules that simulate aspects of the activity of proteins, or that act as inhibitors of protein function, is also within the scope of PROTEINS. In addition to full-length reports, short communications (usually not more than 4 printed pages) and prediction reports are welcome. Reviews are typically by invitation; authors are encouraged to submit proposed topics for consideration.