Qiaoli Wang, Guoqiang Xu, Ouying Yan, Shang Wang, Xin Wang
{"title":"Radiation-induced injury and the gut microbiota: insights from a microbial perspective.","authors":"Qiaoli Wang, Guoqiang Xu, Ouying Yan, Shang Wang, Xin Wang","doi":"10.1177/17562848251347347","DOIUrl":null,"url":null,"abstract":"<p><p>Although radiotherapy is the second most effective cancer treatment, radiation injuries limit its use. About 80% of abdominal-pelvic radiotherapy patients develop acute radiation enteritis, with 20% discontinuing radiotherapy. The lack of effective mitigation measures restricts its clinical application. Recent studies have proposed gut microbiota as a potential biomarker for radiation injuries. However, the interaction between gut microbiota and radiation injuries remains poorly understood. This review summarizes two forms of interaction between gut microbiota and radiation injuries based on the location of the radiation field. One type of interaction, referred to as \"direct interaction,\" involves changes in the diversity and composition of gut microbiota, alterations in microbiota-derived metabolites, disruption of the intestinal barrier, activation of inflammatory responses within the intestine, and involvement of the host's immune system. The second form, called \"indirect interaction,\" includes the influence of the gut microbiota on various body systems, such as gut microbiota-brain axis, gut microbiota-cardiopulmonary axis, and gut microbiota-oral axis. Additionally, we examine promising interventions aimed at reshaping the gut microbiota, including the use of probiotics, prebiotics, and fecal microbiota transplantation. The interaction between radiation injuries and gut microbiota is more complex than previously understood. Therefore, further clarification of the underlying mechanisms will facilitate the application of gut microbiota in preventing and alleviating radiation injuries.</p>","PeriodicalId":48770,"journal":{"name":"Therapeutic Advances in Gastroenterology","volume":"18 ","pages":"17562848251347347"},"PeriodicalIF":3.9000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12174693/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Therapeutic Advances in Gastroenterology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/17562848251347347","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Although radiotherapy is the second most effective cancer treatment, radiation injuries limit its use. About 80% of abdominal-pelvic radiotherapy patients develop acute radiation enteritis, with 20% discontinuing radiotherapy. The lack of effective mitigation measures restricts its clinical application. Recent studies have proposed gut microbiota as a potential biomarker for radiation injuries. However, the interaction between gut microbiota and radiation injuries remains poorly understood. This review summarizes two forms of interaction between gut microbiota and radiation injuries based on the location of the radiation field. One type of interaction, referred to as "direct interaction," involves changes in the diversity and composition of gut microbiota, alterations in microbiota-derived metabolites, disruption of the intestinal barrier, activation of inflammatory responses within the intestine, and involvement of the host's immune system. The second form, called "indirect interaction," includes the influence of the gut microbiota on various body systems, such as gut microbiota-brain axis, gut microbiota-cardiopulmonary axis, and gut microbiota-oral axis. Additionally, we examine promising interventions aimed at reshaping the gut microbiota, including the use of probiotics, prebiotics, and fecal microbiota transplantation. The interaction between radiation injuries and gut microbiota is more complex than previously understood. Therefore, further clarification of the underlying mechanisms will facilitate the application of gut microbiota in preventing and alleviating radiation injuries.
期刊介绍:
Therapeutic Advances in Gastroenterology is an open access journal which delivers the highest quality peer-reviewed original research articles, reviews, and scholarly comment on pioneering efforts and innovative studies in the medical treatment of gastrointestinal and hepatic disorders. The journal has a strong clinical and pharmacological focus and is aimed at an international audience of clinicians and researchers in gastroenterology and related disciplines, providing an online forum for rapid dissemination of recent research and perspectives in this area.
The editors welcome original research articles across all areas of gastroenterology and hepatology.
The journal publishes original research articles and review articles primarily. Original research manuscripts may include laboratory, animal or human/clinical studies – all phases. Letters to the Editor and Case Reports will also be considered.