Yi Tao, Chengdong Sun, Shuyu Huang, Yun Dong, Yajing Kan, Zhiyong Wei, Yan Zhang, Zhonghua Ni, Yunfei Chen
{"title":"Phononic perspective of anisotropic friction: Universal laws from the frictional phonon spectrum.","authors":"Yi Tao, Chengdong Sun, Shuyu Huang, Yun Dong, Yajing Kan, Zhiyong Wei, Yan Zhang, Zhonghua Ni, Yunfei Chen","doi":"10.1103/PhysRevE.111.055506","DOIUrl":null,"url":null,"abstract":"<p><p>Friction, defined as the resistance to relative motion between two contacting objects, has historically been regarded as a consequence of mechanical energy dissipation. However, the precise mechanism by which it operates in the context of phonon excitation has not been fully elucidated. In this study, we present a theoretical framework based on the atomistic Green's function method that connects friction-excited phonons to the resulting friction force. Our analysis reveals that phonons are primarily excited at bi-washboard frequencies and their harmonics when relative motion occurs in arbitrary directions. The theoretical predictions are validated through detailed molecular dynamics simulations and further supported by experimental evidence. A key finding of our work is the identification of a spectral function that links the normalized number densities of friction-excited phonons to their frequencies. This relationship is intrinsic to the friction system and remains independent of specific factors such as sliding velocity or direction. Our discovery enables a quantitative explanation of anisotropic friction, nonmonotonic velocity dependence of friction, and fluctuations in friction, all without relying on additional assumptions. By resolving the spectral characteristics of phonon excitations, this study provides systematic insights into the fundamental nature of friction.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":"111 5-2","pages":"055506"},"PeriodicalIF":2.2000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.111.055506","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
Friction, defined as the resistance to relative motion between two contacting objects, has historically been regarded as a consequence of mechanical energy dissipation. However, the precise mechanism by which it operates in the context of phonon excitation has not been fully elucidated. In this study, we present a theoretical framework based on the atomistic Green's function method that connects friction-excited phonons to the resulting friction force. Our analysis reveals that phonons are primarily excited at bi-washboard frequencies and their harmonics when relative motion occurs in arbitrary directions. The theoretical predictions are validated through detailed molecular dynamics simulations and further supported by experimental evidence. A key finding of our work is the identification of a spectral function that links the normalized number densities of friction-excited phonons to their frequencies. This relationship is intrinsic to the friction system and remains independent of specific factors such as sliding velocity or direction. Our discovery enables a quantitative explanation of anisotropic friction, nonmonotonic velocity dependence of friction, and fluctuations in friction, all without relying on additional assumptions. By resolving the spectral characteristics of phonon excitations, this study provides systematic insights into the fundamental nature of friction.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.