Aswin Balaji, Shruti Tandon, Norbert Marwan, Jürgen Kurths, R I Sujith
{"title":"Nonmonotonic emergence of order from chaos in turbulent thermoacoustic fluid systems.","authors":"Aswin Balaji, Shruti Tandon, Norbert Marwan, Jürgen Kurths, R I Sujith","doi":"10.1103/PhysRevE.111.055105","DOIUrl":null,"url":null,"abstract":"<p><p>Self-sustained order can emerge in complex systems due to internal feedback between coupled subsystems. Here, we present our discovery of a nonmonotonic emergence of order amidst chaos in a turbulent thermoacoustic fluid system. Fluctuations play a vital role in determining the dynamical state and transitions in a system. In this work, we use complex networks to encode jumps in amplitude scales owing to fluctuations as links between nodes representing amplitude bins. The number of possible amplitude transitions at a fixed timescale reflects the complexity of dynamics at that timescale. The network entropy quantifies the number of and uncertainty associated with such transitions. Using network entropy, we show that the uncertainty in fluctuations first increases and then decreases as the system transitions from chaos via intermittency to order. The competition between turbulence and nonlinear interactions leads to such nonmonotonic emergence of order amidst chaos in turbulent thermoacoustic fluid systems.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":"111 5-2","pages":"055105"},"PeriodicalIF":2.4000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.111.055105","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
Self-sustained order can emerge in complex systems due to internal feedback between coupled subsystems. Here, we present our discovery of a nonmonotonic emergence of order amidst chaos in a turbulent thermoacoustic fluid system. Fluctuations play a vital role in determining the dynamical state and transitions in a system. In this work, we use complex networks to encode jumps in amplitude scales owing to fluctuations as links between nodes representing amplitude bins. The number of possible amplitude transitions at a fixed timescale reflects the complexity of dynamics at that timescale. The network entropy quantifies the number of and uncertainty associated with such transitions. Using network entropy, we show that the uncertainty in fluctuations first increases and then decreases as the system transitions from chaos via intermittency to order. The competition between turbulence and nonlinear interactions leads to such nonmonotonic emergence of order amidst chaos in turbulent thermoacoustic fluid systems.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.