Stochastic heat differences between many-particle and density-field descriptions.

IF 2.2 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS
Takuya Saito, Yutaka Sumino
{"title":"Stochastic heat differences between many-particle and density-field descriptions.","authors":"Takuya Saito, Yutaka Sumino","doi":"10.1103/PhysRevE.111.054124","DOIUrl":null,"url":null,"abstract":"<p><p>This article investigates spatiotemporally discrete or continuous stochastic descriptions, where we focus on differences in heat naturally defined between the particle level and the density field. Both descriptions are found to generally make the heat differences by the entropic term expressed just with the number density through spatial projection from the many particles' positions onto the density field. The transformation from the Langevin to Dean-Kawasaki equations is considered as the projection in the continuous descriptions, where the emergent heat differences undergo little temporal variations due to the sparse distributions of the point particles. On the other hand, the analogous formalisms constructed in the discrete models may exhibit the explicit temporal evolutions of the entropic term. Furthermore, we develop arguments about the interpretation and applicability of the heat differences as well as the perspectives to a many-polymer system.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":"111 5-1","pages":"054124"},"PeriodicalIF":2.2000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.111.054124","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

This article investigates spatiotemporally discrete or continuous stochastic descriptions, where we focus on differences in heat naturally defined between the particle level and the density field. Both descriptions are found to generally make the heat differences by the entropic term expressed just with the number density through spatial projection from the many particles' positions onto the density field. The transformation from the Langevin to Dean-Kawasaki equations is considered as the projection in the continuous descriptions, where the emergent heat differences undergo little temporal variations due to the sparse distributions of the point particles. On the other hand, the analogous formalisms constructed in the discrete models may exhibit the explicit temporal evolutions of the entropic term. Furthermore, we develop arguments about the interpretation and applicability of the heat differences as well as the perspectives to a many-polymer system.

多粒子和密度场描述之间的随机热差。
本文研究了时空离散或连续随机描述,其中我们关注的是在粒子水平和密度场之间自然定义的热量差异。发现这两种描述通常使热差通过熵项仅用数密度表示,通过从许多粒子位置到密度场的空间投影。从Langevin方程到Dean-Kawasaki方程的转换被认为是连续描述中的投影,在连续描述中,由于点粒子的稀疏分布,出现的热差经历了很小的时间变化。另一方面,在离散模型中构造的类似形式可能表现出熵项的显式时间演化。此外,我们对热差异的解释和适用性以及对多聚合物体系的观点进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review E
Physical Review E PHYSICS, FLUIDS & PLASMASPHYSICS, MATHEMAT-PHYSICS, MATHEMATICAL
CiteScore
4.50
自引率
16.70%
发文量
2110
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信