Two minimal-variable symplectic integrators for stochastic spin systems.

IF 2.4 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS
Sagy Ephrati, Erik Jansson
{"title":"Two minimal-variable symplectic integrators for stochastic spin systems.","authors":"Sagy Ephrati, Erik Jansson","doi":"10.1103/PhysRevE.111.054201","DOIUrl":null,"url":null,"abstract":"<p><p>We present two symplectic integrators for stochastic spin systems, based on the classical implicit midpoint method. The spin systems are identified with Lie-Poisson systems in matrix algebras, after which the numerical methods are derived from structure-preserving Lie-Poisson integrators for isospectral stochastic matrix flows. The integrators are thus geometric methods, require no auxiliary variables, and are suited for general Hamiltonians and a large class of stochastic forcing functions. Conservation properties and convergence rates are shown for several single-spin and multispin systems.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":"111 5-1","pages":"054201"},"PeriodicalIF":2.4000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.111.054201","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

We present two symplectic integrators for stochastic spin systems, based on the classical implicit midpoint method. The spin systems are identified with Lie-Poisson systems in matrix algebras, after which the numerical methods are derived from structure-preserving Lie-Poisson integrators for isospectral stochastic matrix flows. The integrators are thus geometric methods, require no auxiliary variables, and are suited for general Hamiltonians and a large class of stochastic forcing functions. Conservation properties and convergence rates are shown for several single-spin and multispin systems.

随机自旋系统的两个最小变量辛积分器。
基于经典隐式中点方法,给出了随机自旋系统的两个辛积分器。首先用矩阵代数中的李泊松系统识别自旋系统,然后用等谱随机矩阵流的保结构李泊松积分法推导了自旋系统的数值计算方法。因此,积分器是几何方法,不需要辅助变量,适用于一般哈密顿量和一大类随机强迫函数。给出了几个单自旋和多自旋系统的守恒性质和收敛速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review E
Physical Review E PHYSICS, FLUIDS & PLASMASPHYSICS, MATHEMAT-PHYSICS, MATHEMATICAL
CiteScore
4.50
自引率
16.70%
发文量
2110
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信