Streamlined Krylov construction and classification of ergodic Floquet systems.

IF 2.2 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS
Nikita Kolganov, Dmitrii A Trunin
{"title":"Streamlined Krylov construction and classification of ergodic Floquet systems.","authors":"Nikita Kolganov, Dmitrii A Trunin","doi":"10.1103/PhysRevE.111.L052202","DOIUrl":null,"url":null,"abstract":"<p><p>We generalize the Krylov construction to periodically driven (Floquet) quantum systems using the theory of orthogonal polynomials on the unit circle. Compared to other approaches, our method works faster and maps any quantum dynamics to a one-dimensional tight-binding Krylov chain, which is efficiently simulated on both classical and quantum computers. We also suggest a classification of chaotic and integrable Floquet systems based on the asymptotic behavior of Krylov chain hopping parameters (Verblunsky coefficients). We illustrate this classification with random matrix ensembles, kicked top, and kicked Ising chain.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":"111 5","pages":"L052202"},"PeriodicalIF":2.2000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.111.L052202","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

We generalize the Krylov construction to periodically driven (Floquet) quantum systems using the theory of orthogonal polynomials on the unit circle. Compared to other approaches, our method works faster and maps any quantum dynamics to a one-dimensional tight-binding Krylov chain, which is efficiently simulated on both classical and quantum computers. We also suggest a classification of chaotic and integrable Floquet systems based on the asymptotic behavior of Krylov chain hopping parameters (Verblunsky coefficients). We illustrate this classification with random matrix ensembles, kicked top, and kicked Ising chain.

流线型的Krylov结构和遍历Floquet系统的分类。
利用单位圆上的正交多项式理论,将Krylov构造推广到周期驱动(Floquet)量子系统。与其他方法相比,我们的方法工作速度更快,并将任何量子动力学映射到一维紧密结合的克雷洛夫链,这在经典计算机和量子计算机上都能有效地模拟。我们还提出了基于Krylov链跳参数(Verblunsky系数)渐近行为的混沌可积Floquet系统的分类。我们用随机矩阵集合、踢顶和踢伊辛链来说明这种分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review E
Physical Review E PHYSICS, FLUIDS & PLASMASPHYSICS, MATHEMAT-PHYSICS, MATHEMATICAL
CiteScore
4.50
自引率
16.70%
发文量
2110
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信