Wei Liu, Xin Zhang, Lei Shi, Kai Qi, Xiang Li, Fangfang Wang, Zengru Di
{"title":"Geometric properties of the additional third-order transitions in the two-dimensional Potts model.","authors":"Wei Liu, Xin Zhang, Lei Shi, Kai Qi, Xiang Li, Fangfang Wang, Zengru Di","doi":"10.1103/PhysRevE.111.054128","DOIUrl":null,"url":null,"abstract":"<p><p>Within the canonical ensemble framework, this paper investigates the presence of higher-order transition signals in the q-state Potts model (for q≥3), using two geometric order parameters: isolated spins number and the average perimeter of clusters. Our results confirm that higher-order transitions exist in the Potts model, where the number of isolated spins reliably indicates third-order independent transitions. This signal persists regardless of the system's phase transition order, even at higher values of q. In contrast, the average perimeter of clusters, used as an order parameter for detecting third-order dependent transitions, shows that for q=6 and 8, the signal for third-order dependent transitions disappears, indicating its absence in systems undergoing first-order transitions. These findings are consistent with results from microcanonical inflection-point analysis, further validating the robustness of this approach.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":"111 5-1","pages":"054128"},"PeriodicalIF":2.2000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.111.054128","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
Within the canonical ensemble framework, this paper investigates the presence of higher-order transition signals in the q-state Potts model (for q≥3), using two geometric order parameters: isolated spins number and the average perimeter of clusters. Our results confirm that higher-order transitions exist in the Potts model, where the number of isolated spins reliably indicates third-order independent transitions. This signal persists regardless of the system's phase transition order, even at higher values of q. In contrast, the average perimeter of clusters, used as an order parameter for detecting third-order dependent transitions, shows that for q=6 and 8, the signal for third-order dependent transitions disappears, indicating its absence in systems undergoing first-order transitions. These findings are consistent with results from microcanonical inflection-point analysis, further validating the robustness of this approach.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.