Generalized unscented transformation for forecasting non-Gaussian processes.

IF 2.4 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS
Donald Ebeigbe, Tyrus Berry, Andrew J Whalen, Michael M Norton, Dan Simon, Timothy D Sauer, Steven J Schiff
{"title":"Generalized unscented transformation for forecasting non-Gaussian processes.","authors":"Donald Ebeigbe, Tyrus Berry, Andrew J Whalen, Michael M Norton, Dan Simon, Timothy D Sauer, Steven J Schiff","doi":"10.1103/PhysRevE.111.054135","DOIUrl":null,"url":null,"abstract":"<p><p>The observations of linear and nonlinear physical processes are subject to random errors, which can be represented by a wide variety of probability distributions. In contrast, most estimation and inference techniques rely on a Gaussian assumption, which may limit our ability to make model-based predictions. There is a need for data assimilation methods that can capture and leverage the higher moments of these physical processes for state estimation and forecasting. In this paper, we develop the generalized unscented transform (GenUT), which uses a minimal number of sample points to accurately capture elements of the higher moments of most probability distributions. Constraints can be analytically enforced on the sample points while guaranteeing at least second-order accuracy. The GenUT is widely applicable to non-Gaussian distributions, which can substantially improve the assimilation of observations of nonlinear physics, such as the modeling of infectious diseases.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":"111 5-1","pages":"054135"},"PeriodicalIF":2.4000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12184836/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.111.054135","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

The observations of linear and nonlinear physical processes are subject to random errors, which can be represented by a wide variety of probability distributions. In contrast, most estimation and inference techniques rely on a Gaussian assumption, which may limit our ability to make model-based predictions. There is a need for data assimilation methods that can capture and leverage the higher moments of these physical processes for state estimation and forecasting. In this paper, we develop the generalized unscented transform (GenUT), which uses a minimal number of sample points to accurately capture elements of the higher moments of most probability distributions. Constraints can be analytically enforced on the sample points while guaranteeing at least second-order accuracy. The GenUT is widely applicable to non-Gaussian distributions, which can substantially improve the assimilation of observations of nonlinear physics, such as the modeling of infectious diseases.

非高斯过程预测的广义unscented变换。
线性和非线性物理过程的观测都受到随机误差的影响,随机误差可以用各种各样的概率分布来表示。相比之下,大多数估计和推理技术依赖于高斯假设,这可能会限制我们做出基于模型的预测的能力。需要数据同化方法来捕获和利用这些物理过程的较高时刻进行状态估计和预测。在本文中,我们发展了广义无气味变换(GenUT),它使用最少数量的样本点来准确捕获大多数概率分布的高矩元素。在保证至少二阶精度的同时,可以解析地对样本点施加约束。GenUT广泛适用于非高斯分布,它可以大大改善非线性物理观测的同化,例如传染病的建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review E
Physical Review E PHYSICS, FLUIDS & PLASMASPHYSICS, MATHEMAT-PHYSICS, MATHEMATICAL
CiteScore
4.50
自引率
16.70%
发文量
2110
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信