Diffusive oscillators capture the pulsating states of deformable particles.

IF 2.4 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS
Alessandro Manacorda, Étienne Fodor
{"title":"Diffusive oscillators capture the pulsating states of deformable particles.","authors":"Alessandro Manacorda, Étienne Fodor","doi":"10.1103/PhysRevE.111.L053401","DOIUrl":null,"url":null,"abstract":"<p><p>We study a model of diffusive oscillators whose internal states are subject to a periodic drive. These models are inspired by the dynamics of deformable particles with pulsating sizes, where repulsion leads to arrest the internal pulsation at high density. We reveal that, despite the absence of any repulsion between the diffusive oscillators, our model still captures the emergence of dynamical arrest. We demonstrate that arrest here stems from the discrete nature of internal states, which enforces an effective energy landscape analogous to that of deformable particles. Moreover, we show that the competition between arrest and synchronization promotes spiral waves reminiscent of the pulsating states of deformable particles. Using analytical coarse graining, we derive and compare the collective dynamics of diffusive oscillators with that of deformable particles. This comparison leads to rationalizing the emergence of spirals in terms of a rotational invariance at the coarse-grained level, and to elucidating the role of hydrodynamic fluctuations.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":"111 5","pages":"L053401"},"PeriodicalIF":2.4000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.111.L053401","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

We study a model of diffusive oscillators whose internal states are subject to a periodic drive. These models are inspired by the dynamics of deformable particles with pulsating sizes, where repulsion leads to arrest the internal pulsation at high density. We reveal that, despite the absence of any repulsion between the diffusive oscillators, our model still captures the emergence of dynamical arrest. We demonstrate that arrest here stems from the discrete nature of internal states, which enforces an effective energy landscape analogous to that of deformable particles. Moreover, we show that the competition between arrest and synchronization promotes spiral waves reminiscent of the pulsating states of deformable particles. Using analytical coarse graining, we derive and compare the collective dynamics of diffusive oscillators with that of deformable particles. This comparison leads to rationalizing the emergence of spirals in terms of a rotational invariance at the coarse-grained level, and to elucidating the role of hydrodynamic fluctuations.

扩散振荡器捕捉可变形粒子的脉动状态。
研究了一个内部状态受周期驱动的扩散振子模型。这些模型的灵感来自于具有脉动大小的可变形粒子的动力学,其中排斥力导致在高密度下阻止内部脉动。我们发现,尽管扩散振子之间没有任何排斥,我们的模型仍然捕捉到动态停滞的出现。我们证明,这里的阻滞源于内部状态的离散性,它强制执行类似于可变形粒子的有效能量景观。此外,我们还表明,同步和停滞之间的竞争促进了螺旋波,使人联想到可变形粒子的脉动状态。利用解析粗粒化,我们推导并比较了扩散振子与可变形粒子的集体动力学。这种比较使得在粗粒度水平上的旋转不变性使螺旋的出现合理化,并阐明了流体动力学波动的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review E
Physical Review E PHYSICS, FLUIDS & PLASMASPHYSICS, MATHEMAT-PHYSICS, MATHEMATICAL
CiteScore
4.50
自引率
16.70%
发文量
2110
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信