An Enhanced Hybrid Model Combining CNN, BiLSTM, and Attention Mechanism for ECG Segment Classification.

IF 3.1 Q3 ENGINEERING, BIOMEDICAL
Biomedical Engineering and Computational Biology Pub Date : 2025-06-17 eCollection Date: 2025-01-01 DOI:10.1177/11795972251341051
Mechichi Najia, Benzarti Faouzi
{"title":"An Enhanced Hybrid Model Combining CNN, BiLSTM, and Attention Mechanism for ECG Segment Classification.","authors":"Mechichi Najia, Benzarti Faouzi","doi":"10.1177/11795972251341051","DOIUrl":null,"url":null,"abstract":"<p><p>Deep learning models are necessary in the field of healthcare for the diagnosis of cardiac rhythm diseases since the conventional ECG classification is based on hand-crafted feature engineering and traditional machine learning. Nevertheless, CNN and BiLSTM architectures provide automatic feature learning, enhancing ECG classification accuracy. The current research work puts forward a framework integrating CNN with CBAM and BiLSTM layers for the purpose of extracting valuable features and classifying ECG signals. The model classifies heartbeats according to the AAMI EC57 standard into 5 categories: normal beats (N), supraventricular ectopic beats (S), ventricular ectopic beats (V), fusion beats (F), and unknown beats (Q). To tackle uneven class distributions, SMOTE synthesizes new samples, making the model more robust. Evaluation on MIT-BIH arrhythmia database yields remarkable results with 99.20% accuracy, 97.50% sensitivity, 99.81% specificity, and 98.29% mean <i>F</i>1 score. Deep learning methods have great potential to alleviate clinicians' workload and improve diagnostic accuracy of cardiac diseases.</p>","PeriodicalId":42484,"journal":{"name":"Biomedical Engineering and Computational Biology","volume":"16 ","pages":"11795972251341051"},"PeriodicalIF":3.1000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12174755/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/11795972251341051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Deep learning models are necessary in the field of healthcare for the diagnosis of cardiac rhythm diseases since the conventional ECG classification is based on hand-crafted feature engineering and traditional machine learning. Nevertheless, CNN and BiLSTM architectures provide automatic feature learning, enhancing ECG classification accuracy. The current research work puts forward a framework integrating CNN with CBAM and BiLSTM layers for the purpose of extracting valuable features and classifying ECG signals. The model classifies heartbeats according to the AAMI EC57 standard into 5 categories: normal beats (N), supraventricular ectopic beats (S), ventricular ectopic beats (V), fusion beats (F), and unknown beats (Q). To tackle uneven class distributions, SMOTE synthesizes new samples, making the model more robust. Evaluation on MIT-BIH arrhythmia database yields remarkable results with 99.20% accuracy, 97.50% sensitivity, 99.81% specificity, and 98.29% mean F1 score. Deep learning methods have great potential to alleviate clinicians' workload and improve diagnostic accuracy of cardiac diseases.

Abstract Image

Abstract Image

Abstract Image

一种结合CNN、BiLSTM和注意机制的增强混合模型用于心电段分类。
由于传统的心电分类是基于手工特征工程和传统机器学习,因此在医疗保健领域,深度学习模型对于心律疾病的诊断是必要的。然而,CNN和BiLSTM架构提供了自动特征学习,提高了心电分类的准确性。目前的研究工作提出了一种将CNN与CBAM和BiLSTM层相结合的框架,以提取有价值的特征并对心电信号进行分类。该模型根据AAMI EC57标准将心跳分为5类:正常心跳(N)、室上异位心跳(S)、室上异位心跳(V)、融合心跳(F)和未知心跳(Q)。为了处理不均匀的类分布,SMOTE合成了新的样本,使模型更加鲁棒。对MIT-BIH心律失常数据库的评估结果显著,准确率为99.20%,灵敏度为97.50%,特异性为99.81%,F1平均评分为98.29%。深度学习方法在减轻临床医生的工作量和提高心脏病诊断准确性方面具有很大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
1
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信