Reconstructing ECG from indirect signals: a denoising diffusion approach.

IF 4.3 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Lisa Bedin, Yazid Janati, Gabriel Victorino Cardoso, Josselin Duchateau, Rémi Dubois, Eric Moulines
{"title":"Reconstructing ECG from indirect signals: a denoising diffusion approach.","authors":"Lisa Bedin, Yazid Janati, Gabriel Victorino Cardoso, Josselin Duchateau, Rémi Dubois, Eric Moulines","doi":"10.1098/rsta.2024.0330","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we introduce RhythmDiff, a novel diffusion-based generative model specifically designed for synthesizing high-fidelity 12-lead electrocardiogram (ECG) signals. RhythmDiff incorporates structured state-space modeling to capture morphological and temporal characteristics inherent in ECG waveforms efficiently. By embedding RhythmDiff as a prior distribution within a Bayesian inverse problem formulation, we derive the algorithm MGPS, enabling conditional ECG generation robust to varying degrees of degradations (noise, pattern of missingness) and artifacts. Our proposed framework effectively addresses the challenges associated with multi-lead reconstruction and noise reduction, demonstrating superior performance compared to existing state of-the-art ECG generative models across multiple benchmark datasets. These advancements facilitate more reliable ECG interpretation, particularly beneficial for resource-limited clinical settings and wearable technologies, enabling broader applicability in realtime cardiac health monitoring scenarios.This article is part of the theme issue 'Generative modelling meets Bayesian inference: a new paradigm for inverse problems'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"383 2299","pages":"20240330"},"PeriodicalIF":4.3000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2024.0330","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we introduce RhythmDiff, a novel diffusion-based generative model specifically designed for synthesizing high-fidelity 12-lead electrocardiogram (ECG) signals. RhythmDiff incorporates structured state-space modeling to capture morphological and temporal characteristics inherent in ECG waveforms efficiently. By embedding RhythmDiff as a prior distribution within a Bayesian inverse problem formulation, we derive the algorithm MGPS, enabling conditional ECG generation robust to varying degrees of degradations (noise, pattern of missingness) and artifacts. Our proposed framework effectively addresses the challenges associated with multi-lead reconstruction and noise reduction, demonstrating superior performance compared to existing state of-the-art ECG generative models across multiple benchmark datasets. These advancements facilitate more reliable ECG interpretation, particularly beneficial for resource-limited clinical settings and wearable technologies, enabling broader applicability in realtime cardiac health monitoring scenarios.This article is part of the theme issue 'Generative modelling meets Bayesian inference: a new paradigm for inverse problems'.

从间接信号重构心电:一种去噪扩散方法。
在这项研究中,我们介绍了一种新的基于扩散的生成模型RhythmDiff,专门用于合成高保真12导联心电图(ECG)信号。RhythmDiff结合结构化状态空间建模,有效捕获ECG波形固有的形态和时间特征。通过将RhythmDiff作为先验分布嵌入贝叶斯反问题公式中,我们推导出算法MGPS,使条件ECG生成对不同程度的退化(噪声,缺失模式)和伪像具有鲁棒性。我们提出的框架有效地解决了与多导联重建和降噪相关的挑战,与现有的最先进的ECG生成模型相比,在多个基准数据集上表现出卓越的性能。这些进步促进了更可靠的心电图解释,尤其有利于资源有限的临床环境和可穿戴技术,使实时心脏健康监测场景具有更广泛的适用性。本文是主题问题“生成建模与贝叶斯推理:反问题的新范式”的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.30
自引率
2.00%
发文量
367
审稿时长
3 months
期刊介绍: Continuing its long history of influential scientific publishing, Philosophical Transactions A publishes high-quality theme issues on topics of current importance and general interest within the physical, mathematical and engineering sciences, guest-edited by leading authorities and comprising new research, reviews and opinions from prominent researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信