Generative priors for MRI reconstruction trained from magnitude-only images using phase augmentation.

IF 4.3 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Guanxiong Luo, Xiaoqing Wang, Moritz Blumenthal, Martin Schilling, Raviteja Kotikalapudi, Erik Rauf, Niels Focke, Martin Uecker
{"title":"Generative priors for MRI reconstruction trained from magnitude-only images using phase augmentation.","authors":"Guanxiong Luo, Xiaoqing Wang, Moritz Blumenthal, Martin Schilling, Raviteja Kotikalapudi, Erik Rauf, Niels Focke, Martin Uecker","doi":"10.1098/rsta.2024.0323","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, we present a workflow to construct generic and robust generative image priors from magnitude-only images. The priors can then be used for regularization in reconstruction to improve image quality. The workflow begins with the preparation of training datasets from magnitude-only magnetic resonance (MR) images. This dataset is then augmented with phase information and used to train generative priors of complex images. Finally, trained priors are evaluated using both linear and nonlinear reconstruction for compressed sensing parallel imaging with various undersampling schemes. The results of our experiments demonstrate that priors trained on complex images outperform priors trained only on magnitude images. In addition, a prior trained on a larger dataset exhibits higher robustness. Finally, we show that the generative priors are superior to [Formula: see text]-wavelet regularization for compressed sensing parallel imaging with high undersampling. These findings stress the importance of incorporating phase information and leveraging large datasets to raise the performance and reliability of the generative priors for MR imaging (MRI) reconstruction. Phase augmentation makes it possible to use existing image databases for training.This article is part of the theme issue 'Generative modelling meets Bayesian inference: a new paradigm for inverse problems'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"383 2299","pages":"20240323"},"PeriodicalIF":4.3000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12177528/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2024.0323","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we present a workflow to construct generic and robust generative image priors from magnitude-only images. The priors can then be used for regularization in reconstruction to improve image quality. The workflow begins with the preparation of training datasets from magnitude-only magnetic resonance (MR) images. This dataset is then augmented with phase information and used to train generative priors of complex images. Finally, trained priors are evaluated using both linear and nonlinear reconstruction for compressed sensing parallel imaging with various undersampling schemes. The results of our experiments demonstrate that priors trained on complex images outperform priors trained only on magnitude images. In addition, a prior trained on a larger dataset exhibits higher robustness. Finally, we show that the generative priors are superior to [Formula: see text]-wavelet regularization for compressed sensing parallel imaging with high undersampling. These findings stress the importance of incorporating phase information and leveraging large datasets to raise the performance and reliability of the generative priors for MR imaging (MRI) reconstruction. Phase augmentation makes it possible to use existing image databases for training.This article is part of the theme issue 'Generative modelling meets Bayesian inference: a new paradigm for inverse problems'.

生成先验的MRI重建训练从大小的图像使用相位增强。
在这项工作中,我们提出了一个工作流来构建通用的和鲁棒的生成图像先验从只有大小的图像。然后,先验可以用于正则化重建,以提高图像质量。工作流程开始于从仅大小的磁共振(MR)图像准备训练数据集。然后用相位信息增强该数据集,并用于训练复杂图像的生成先验。最后,利用线性和非线性重构对不同欠采样方案下压缩感知并行成像的训练先验进行评估。我们的实验结果表明,在复杂图像上训练的先验优于仅在大小图像上训练的先验。此外,在更大的数据集上训练的先验具有更高的鲁棒性。最后,我们证明了生成先验优于[公式:见文本]-小波正则化在高欠采样的压缩感知并行成像。这些发现强调了结合相位信息和利用大型数据集来提高生成先验的性能和可靠性的重要性,以用于磁共振成像(MRI)重建。相位增强使得使用现有的图像数据库进行训练成为可能。本文是主题问题“生成建模与贝叶斯推理:反问题的新范式”的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.30
自引率
2.00%
发文量
367
审稿时长
3 months
期刊介绍: Continuing its long history of influential scientific publishing, Philosophical Transactions A publishes high-quality theme issues on topics of current importance and general interest within the physical, mathematical and engineering sciences, guest-edited by leading authorities and comprising new research, reviews and opinions from prominent researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信