Tristan S W Stevens, Jeroen Overdevest, Oisín Nolan, Wessel L van Nierop, Ruud J G van Sloun, Yonina C Eldar
{"title":"Deep generative models for Bayesian inference on high-rate sensor data: applications in automotive radar and medical imaging.","authors":"Tristan S W Stevens, Jeroen Overdevest, Oisín Nolan, Wessel L van Nierop, Ruud J G van Sloun, Yonina C Eldar","doi":"10.1098/rsta.2024.0327","DOIUrl":null,"url":null,"abstract":"<p><p>Deep generative models (DGMs) have been studied and developed primarily in the context of natural images and computer vision. This has spurred the development of (Bayesian) methods that use these generative models for inverse problems in image restoration, such as denoising, inpainting and super-resolution. In recent years, generative modelling for Bayesian inference on sensory data has also gained traction. Nevertheless, the direct application of generative modelling techniques initially designed for natural images on raw sensory data is not straightforward, requiring solutions that deal with high dynamic range signals (HDR) acquired from multiple sensors or arrays of sensors that interfere with each other, and that typically acquire data at a very high rate. Moreover, the exact physical data-generating process is often complex or unknown. As a consequence, approximate models are used, resulting in discrepancies between model predictions and observations that are non-Gaussian, in turn complicating the Bayesian inverse problem. Finally, sensor data are often used in real-time processing or decision-making systems, imposing stringent requirements on, e.g. latency and throughput. In this article, we discuss some of these challenges and offer approaches to address them, all in the context of high-rate real-time sensing applications in automotive radar and medical imaging.This article is part of the theme issue 'Generative modelling meets Bayesian inference: a new paradigm for inverse problems'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"383 2299","pages":"20240327"},"PeriodicalIF":4.3000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12177526/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2024.0327","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Deep generative models (DGMs) have been studied and developed primarily in the context of natural images and computer vision. This has spurred the development of (Bayesian) methods that use these generative models for inverse problems in image restoration, such as denoising, inpainting and super-resolution. In recent years, generative modelling for Bayesian inference on sensory data has also gained traction. Nevertheless, the direct application of generative modelling techniques initially designed for natural images on raw sensory data is not straightforward, requiring solutions that deal with high dynamic range signals (HDR) acquired from multiple sensors or arrays of sensors that interfere with each other, and that typically acquire data at a very high rate. Moreover, the exact physical data-generating process is often complex or unknown. As a consequence, approximate models are used, resulting in discrepancies between model predictions and observations that are non-Gaussian, in turn complicating the Bayesian inverse problem. Finally, sensor data are often used in real-time processing or decision-making systems, imposing stringent requirements on, e.g. latency and throughput. In this article, we discuss some of these challenges and offer approaches to address them, all in the context of high-rate real-time sensing applications in automotive radar and medical imaging.This article is part of the theme issue 'Generative modelling meets Bayesian inference: a new paradigm for inverse problems'.
期刊介绍:
Continuing its long history of influential scientific publishing, Philosophical Transactions A publishes high-quality theme issues on topics of current importance and general interest within the physical, mathematical and engineering sciences, guest-edited by leading authorities and comprising new research, reviews and opinions from prominent researchers.