Meng-Zhuan Han, Yan Wang, Ke-Xin Sun, Yong-Jian Zhang, Ru-Yue Bai, Lin-Hong Wu, Xia-Xia Hai, Bao-Chang Lai, Jing-Jing Li, Gang She, Yi Zhang, Xiao-Jun Du, Zheng-Da Pang, Xiu-Ling Deng
{"title":"Upregulating vascular endothelial K<sub>Ca</sub>2.3 channels alleviates pulmonary hypertension in mice.","authors":"Meng-Zhuan Han, Yan Wang, Ke-Xin Sun, Yong-Jian Zhang, Ru-Yue Bai, Lin-Hong Wu, Xia-Xia Hai, Bao-Chang Lai, Jing-Jing Li, Gang She, Yi Zhang, Xiao-Jun Du, Zheng-Da Pang, Xiu-Ling Deng","doi":"10.1016/j.molpha.2025.100048","DOIUrl":null,"url":null,"abstract":"<p><p>Endothelial dysfunction of pulmonary arteries is important in the initiation of pulmonary hypertension (PH). Pulmonary vascular tone is regulated by endothelium-dependent hyperpolarization (EDH) that induces vasodilation. Although K<sub>Ca</sub>2.3 channels are involved as a key initiator of EDH response, therapeutic potential of endothelial K<sub>Ca</sub>2.3 channels in PH remains unclear. Bioinformatic and biochemical analyses were used to explore K<sub>Ca</sub>2.3 expression in patients with PH. Two mouse PH models were created by injection of Sugen 5416 plus hypoxia or injection with monocrotaline. Endothelial-specific K<sub>Ca</sub>2.3 adeno-associated virus (AAV-Kcnn3) was constructed, and the efficacy in both PH models was tested using immunohistochemistry, myograph system, and echocardiography. Expression of K<sub>Ca</sub>2.3 was decreased in pulmonary arterial endothelial cells or lung tissues from patients with PH and both experimental PH models. AAV-Kcnn3 treatment increased K<sub>Ca</sub>2.3 expression in pulmonary endothelium and ameliorated K<sub>Ca</sub>2.3-medieated vasodilation of small pulmonary arteries and pulmonary vascular endothelial dysfunction in both PH models. The key PH phenotypes, including elevated right ventricular pressure, Fulton index, pulmonary artery wall thickness, and the free wall thickness of the right ventricle, were remarkably alleviated by AAV-Kcnn3 treatment in both PH models. In conclusion, augmented expression of endothelium-specific K<sub>Ca</sub>2.3 channels markedly inhibits the development of PH by improving endothelium-dependent relaxation. SIGNIFICANCE STATEMENT: This study demonstrated downregulated expression of K<sub>Ca</sub>2.3 channels in lung tissues, specifically in pulmonary artery endothelial cells from patients or mice with pulmonary hypertension. Upregulation of endothelial K<sub>Ca</sub>2.3 might serve as a therapeutic strategy in the early-stage pulmonary hypertension.</p>","PeriodicalId":18767,"journal":{"name":"Molecular Pharmacology","volume":"107 7","pages":"100048"},"PeriodicalIF":3.2000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.molpha.2025.100048","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Endothelial dysfunction of pulmonary arteries is important in the initiation of pulmonary hypertension (PH). Pulmonary vascular tone is regulated by endothelium-dependent hyperpolarization (EDH) that induces vasodilation. Although KCa2.3 channels are involved as a key initiator of EDH response, therapeutic potential of endothelial KCa2.3 channels in PH remains unclear. Bioinformatic and biochemical analyses were used to explore KCa2.3 expression in patients with PH. Two mouse PH models were created by injection of Sugen 5416 plus hypoxia or injection with monocrotaline. Endothelial-specific KCa2.3 adeno-associated virus (AAV-Kcnn3) was constructed, and the efficacy in both PH models was tested using immunohistochemistry, myograph system, and echocardiography. Expression of KCa2.3 was decreased in pulmonary arterial endothelial cells or lung tissues from patients with PH and both experimental PH models. AAV-Kcnn3 treatment increased KCa2.3 expression in pulmonary endothelium and ameliorated KCa2.3-medieated vasodilation of small pulmonary arteries and pulmonary vascular endothelial dysfunction in both PH models. The key PH phenotypes, including elevated right ventricular pressure, Fulton index, pulmonary artery wall thickness, and the free wall thickness of the right ventricle, were remarkably alleviated by AAV-Kcnn3 treatment in both PH models. In conclusion, augmented expression of endothelium-specific KCa2.3 channels markedly inhibits the development of PH by improving endothelium-dependent relaxation. SIGNIFICANCE STATEMENT: This study demonstrated downregulated expression of KCa2.3 channels in lung tissues, specifically in pulmonary artery endothelial cells from patients or mice with pulmonary hypertension. Upregulation of endothelial KCa2.3 might serve as a therapeutic strategy in the early-stage pulmonary hypertension.
期刊介绍:
Molecular Pharmacology publishes findings derived from the application of innovative structural biology, biochemistry, biophysics, physiology, genetics, and molecular biology to basic pharmacological problems that provide mechanistic insights that are broadly important for the fields of pharmacology and toxicology. Relevant topics include:
Molecular Signaling / Mechanism of Drug Action
Chemical Biology / Drug Discovery
Structure of Drug-Receptor Complex
Systems Analysis of Drug Action
Drug Transport / Metabolism