Neural mechanisms underlying the improvement of gait disturbances in stroke patients through robot-assisted gait training based on QEEG and fNIRS: a randomized controlled study.
Xiang Li, Huihuang Zhang, Wanying Zhang, Jianing Wu, Lei Dai, Nasha Long, Tiefeng Jin, Lei Gu, Jianer Chen
{"title":"Neural mechanisms underlying the improvement of gait disturbances in stroke patients through robot-assisted gait training based on QEEG and fNIRS: a randomized controlled study.","authors":"Xiang Li, Huihuang Zhang, Wanying Zhang, Jianing Wu, Lei Dai, Nasha Long, Tiefeng Jin, Lei Gu, Jianer Chen","doi":"10.1186/s12984-025-01656-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Robot-assisted gait training is more effective in improving lower limb function and walking ability in stroke patients compared to conventional rehabilitation, but the neural mechanisms remain unclear. This study aims to explore the effects of robot-assisted gait training on lower limb motor dysfunction in stroke patients and its impact on neural activity in the motor cortex, providing objective evidence for clinical application.</p><p><strong>Methods: </strong>Forty-two stroke patients meeting the inclusion criteria were randomly assigned to either the experimental group receiving robot-assisted gait training or the control group receiving conventional overground walking training. Assessments were conducted at baseline and after four weeks of treatment. Primary outcome measures included cortical activation measured by functional near-infrared spectroscopy (fNIRS), power ratio index (PRI), and delta/alpha power ratio (DAR) measured by quantitative electroencephalography (QEEG), and their correlation with the Fugl-Meyer Assessment (FMA) for lower limb motor function. Secondary outcome measures included FMA and Functional Ambulation Category (FAC).</p><p><strong>Results: </strong>Data from 36 patients (18 in each group) after four weeks of treatment were analyzed. The fNIRS results indicated better activation in the premotor and supplementary motor cortices in the robot-assisted gait training group compared to the control group. QEEG analysis showed reduced PRI and DAR in the premotor, supplementary motor, and primary motor cortices in the robot-assisted gait training group, suggesting improved motor function recovery in stroke patients. Clinical scale analysis revealed superior motor function recovery in the robot-assisted gait training group compared to the control group.</p><p><strong>Conclusions: </strong>Robot-assisted gait training significantly enhances activation in the primary motor cortex and supplementary motor area, potentially aiding stroke patients in recovering their ability to plan. PRI and DAR, particularly PRI, are valuable clinical indicators for assessing motor function recovery in stroke patients.</p><p><strong>Trial registration: </strong>Chinese Clinical Trial Registry (ChiCTR2200060668). Registered on June 6, 2022; https://www.chictr.org.cn/showproj.html?proj=171610 .</p>","PeriodicalId":16384,"journal":{"name":"Journal of NeuroEngineering and Rehabilitation","volume":"22 1","pages":"136"},"PeriodicalIF":5.2000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12175367/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of NeuroEngineering and Rehabilitation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12984-025-01656-2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Robot-assisted gait training is more effective in improving lower limb function and walking ability in stroke patients compared to conventional rehabilitation, but the neural mechanisms remain unclear. This study aims to explore the effects of robot-assisted gait training on lower limb motor dysfunction in stroke patients and its impact on neural activity in the motor cortex, providing objective evidence for clinical application.
Methods: Forty-two stroke patients meeting the inclusion criteria were randomly assigned to either the experimental group receiving robot-assisted gait training or the control group receiving conventional overground walking training. Assessments were conducted at baseline and after four weeks of treatment. Primary outcome measures included cortical activation measured by functional near-infrared spectroscopy (fNIRS), power ratio index (PRI), and delta/alpha power ratio (DAR) measured by quantitative electroencephalography (QEEG), and their correlation with the Fugl-Meyer Assessment (FMA) for lower limb motor function. Secondary outcome measures included FMA and Functional Ambulation Category (FAC).
Results: Data from 36 patients (18 in each group) after four weeks of treatment were analyzed. The fNIRS results indicated better activation in the premotor and supplementary motor cortices in the robot-assisted gait training group compared to the control group. QEEG analysis showed reduced PRI and DAR in the premotor, supplementary motor, and primary motor cortices in the robot-assisted gait training group, suggesting improved motor function recovery in stroke patients. Clinical scale analysis revealed superior motor function recovery in the robot-assisted gait training group compared to the control group.
Conclusions: Robot-assisted gait training significantly enhances activation in the primary motor cortex and supplementary motor area, potentially aiding stroke patients in recovering their ability to plan. PRI and DAR, particularly PRI, are valuable clinical indicators for assessing motor function recovery in stroke patients.
Trial registration: Chinese Clinical Trial Registry (ChiCTR2200060668). Registered on June 6, 2022; https://www.chictr.org.cn/showproj.html?proj=171610 .
期刊介绍:
Journal of NeuroEngineering and Rehabilitation considers manuscripts on all aspects of research that result from cross-fertilization of the fields of neuroscience, biomedical engineering, and physical medicine & rehabilitation.