Homologous recombination-DNA damage response defects increase TMB and neoantigen load, but not effector T cell density and clonal diversity in pancreatic cancer.

IF 9.4 1区 医学 Q1 HEMATOLOGY
Mengyue Lei, Jessica Gai, Thomas J McPhaul, Huijuan Luo, Penghui Lin, Dongbing Liu, Michael Pishvaian, Nicholas J Roberts, Kui Wu, Jin He, Lei Zheng
{"title":"Homologous recombination-DNA damage response defects increase TMB and neoantigen load, but not effector T cell density and clonal diversity in pancreatic cancer.","authors":"Mengyue Lei, Jessica Gai, Thomas J McPhaul, Huijuan Luo, Penghui Lin, Dongbing Liu, Michael Pishvaian, Nicholas J Roberts, Kui Wu, Jin He, Lei Zheng","doi":"10.1186/s40164-025-00673-0","DOIUrl":null,"url":null,"abstract":"<p><p>Pancreatic ductal adenocarcinoma (PDAC) is highly resistant to chemotherapy. However, PDAC with germline BRCA mutations, which lead to homologous recombination (HR) deficiency (HRD), demonstrated an increased sensitivity to platinum-based chemotherapy regimens. This increased chemosensitivity was also seen in PDACs with germline or somatic mutations in the DNA double-strand damage response (DDR) genes beyond canonical HR genes such as BRCA1, BRCA2, and PALB2. However, there are no consensus methods to determine HRD status; and neither is there a well-defined list of HR-DDR genes. In addition, how HRD and/or HR-DDR gene mutation status impacts the tumor immune microenvironment including tumor mutation burden (TMB), neoantigen load, T cell receptor (TCR) repertoire, and effector T cell infiltration is unknown. Thus, in this study, we developed a new method to categorize PDACs into HRD-positive and HRD-negative subgroups by using results from whole exome sequencing, whole genome sequencing, or both into consideration. We classified a cohort of 89 PDACs into HRD-positive (n = 18) and HRD-negative (n = 69) tumors. HR-DDR gene variants were identified more frequently in HRD-positive PDACs than HRD-negative PDACs, with RAD51B, BRCA2 and ATM alterations most frequently identified in HRD-positive PDACs. Notably, TMB and neoantigen load was significantly higher in HRD-positive PDACs compared to HRD-negative tumors. Interestingly, HRD-positive PDACs, PDACs with high tumor mutational burden, and PDAC with high neoantigen load were all associated with lower CD8 + T lymphocyte infiltration and T cell clonal diversity, suggesting a mechanism of resistance to immune checkpoint inhibitors (ICIs). Therefore, this study suggests that treatments to enhance effector T cell infiltration and T cell clonal diversity may overcome resistance to ICI-based immunotherapy in HRD-positive PDACs.</p>","PeriodicalId":12180,"journal":{"name":"Experimental Hematology & Oncology","volume":"14 1","pages":"86"},"PeriodicalIF":9.4000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12178057/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Hematology & Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40164-025-00673-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is highly resistant to chemotherapy. However, PDAC with germline BRCA mutations, which lead to homologous recombination (HR) deficiency (HRD), demonstrated an increased sensitivity to platinum-based chemotherapy regimens. This increased chemosensitivity was also seen in PDACs with germline or somatic mutations in the DNA double-strand damage response (DDR) genes beyond canonical HR genes such as BRCA1, BRCA2, and PALB2. However, there are no consensus methods to determine HRD status; and neither is there a well-defined list of HR-DDR genes. In addition, how HRD and/or HR-DDR gene mutation status impacts the tumor immune microenvironment including tumor mutation burden (TMB), neoantigen load, T cell receptor (TCR) repertoire, and effector T cell infiltration is unknown. Thus, in this study, we developed a new method to categorize PDACs into HRD-positive and HRD-negative subgroups by using results from whole exome sequencing, whole genome sequencing, or both into consideration. We classified a cohort of 89 PDACs into HRD-positive (n = 18) and HRD-negative (n = 69) tumors. HR-DDR gene variants were identified more frequently in HRD-positive PDACs than HRD-negative PDACs, with RAD51B, BRCA2 and ATM alterations most frequently identified in HRD-positive PDACs. Notably, TMB and neoantigen load was significantly higher in HRD-positive PDACs compared to HRD-negative tumors. Interestingly, HRD-positive PDACs, PDACs with high tumor mutational burden, and PDAC with high neoantigen load were all associated with lower CD8 + T lymphocyte infiltration and T cell clonal diversity, suggesting a mechanism of resistance to immune checkpoint inhibitors (ICIs). Therefore, this study suggests that treatments to enhance effector T cell infiltration and T cell clonal diversity may overcome resistance to ICI-based immunotherapy in HRD-positive PDACs.

同源重组- dna损伤反应缺陷增加胰腺癌中TMB和新抗原负荷,但不增加效应T细胞密度和克隆多样性。
胰腺导管腺癌(PDAC)对化疗具有高度耐药性。然而,伴有种系BRCA突变的PDAC,会导致同源重组(HR)缺陷(HRD),对铂类化疗方案的敏感性增加。除了典型的HR基因如BRCA1、BRCA2和PALB2外,在DNA双链损伤反应(DDR)基因发生种系或体细胞突变的pdac中也发现了这种增加的化学敏感性。然而,没有一致的方法来确定人力资源开发状况;也没有一个明确的HR-DDR基因列表。此外,HRD和/或HR-DDR基因突变状态如何影响肿瘤免疫微环境,包括肿瘤突变负荷(TMB)、新抗原负荷、T细胞受体(TCR)库和效应T细胞浸润尚不清楚。因此,在本研究中,我们开发了一种新的方法,通过使用全外显子组测序、全基因组测序或两者同时考虑的结果,将pdac分为hrd阳性和hrd阴性亚组。我们将89例pdac患者分为hrd阳性肿瘤(n = 18)和hrd阴性肿瘤(n = 69)。HR-DDR基因变异在hrd阳性的pdac中比在hrd阴性的pdac中更常见,其中RAD51B、BRCA2和ATM的改变在hrd阳性的pdac中最常见。值得注意的是,与hrd阴性的肿瘤相比,hrd阳性的pdac中TMB和新抗原载量明显更高。有趣的是,hrd阳性的PDAC、高肿瘤突变负荷的PDAC和高新抗原负荷的PDAC都与CD8 + T淋巴细胞浸润和T细胞克隆多样性降低相关,这提示了对免疫检查点抑制剂(ICIs)的抵抗机制。因此,本研究提示,增强效应T细胞浸润和T细胞克隆多样性的治疗可能克服hrd阳性pdac对基于ci的免疫治疗的耐药性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.60
自引率
7.30%
发文量
97
审稿时长
6 weeks
期刊介绍: Experimental Hematology & Oncology is an open access journal that encompasses all aspects of hematology and oncology with an emphasis on preclinical, basic, patient-oriented and translational research. The journal acts as an international platform for sharing laboratory findings in these areas and makes a deliberate effort to publish clinical trials with 'negative' results and basic science studies with provocative findings. Experimental Hematology & Oncology publishes original work, hypothesis, commentaries and timely reviews. With open access and rapid turnaround time from submission to publication, the journal strives to be a hub for disseminating new knowledge and discussing controversial topics for both basic scientists and busy clinicians in the closely related fields of hematology and oncology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信