Prognostic related signature predicts the benefits of immunotherapy for kidney renal clear cell carcinoma.

IF 2.8 4区 医学 Q3 ENDOCRINOLOGY & METABOLISM
Feng Xiong, Bowen Wang, Haoxun Zhang, Guoling Zhang, Boju Tao, Yiwen Liu, Chunyang Wang
{"title":"Prognostic related signature predicts the benefits of immunotherapy for kidney renal clear cell carcinoma.","authors":"Feng Xiong, Bowen Wang, Haoxun Zhang, Guoling Zhang, Boju Tao, Yiwen Liu, Chunyang Wang","doi":"10.1007/s12672-025-02991-5","DOIUrl":null,"url":null,"abstract":"<p><p>Clear cell renal cell carcinoma (ccRCC) stands as the pivotal pathological subtype of renal cell carcinoma. However, there exists a dearth of pertinent biological targets crucial for advancing the clinical application of ccRCC. In our investigation, we employed the weighted gene co-expression network analysis (WGCNA) to discern 13 distinct gene co-expression modules, with the yellow module exhibiting a pronounced association with tumorigenesis. Concurrently, we scrutinized 6147 differentially expressed genes through rigorous differential expression analysis. Through an intersecting approach with the genes within the yellow module, we pinpointed 265 cancer-related genes displaying notable differential expression. Subsequent Cox-regression analysis unveiled that among the 265 genes, four were notably linked to ccRCC prognosis. Furthermore, we executed single-sample gene set enrichment analysis (ssGSEA) on the signature comprising these four genes, subsequently deriving normalized enrichment scores (NESs). This investigation substantiated that the said signature bears significant implications for prognosis, holding the potential to forecast the efficacy of immunotherapy.</p>","PeriodicalId":11148,"journal":{"name":"Discover. Oncology","volume":"16 1","pages":"1153"},"PeriodicalIF":2.8000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12179015/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discover. Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12672-025-02991-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Clear cell renal cell carcinoma (ccRCC) stands as the pivotal pathological subtype of renal cell carcinoma. However, there exists a dearth of pertinent biological targets crucial for advancing the clinical application of ccRCC. In our investigation, we employed the weighted gene co-expression network analysis (WGCNA) to discern 13 distinct gene co-expression modules, with the yellow module exhibiting a pronounced association with tumorigenesis. Concurrently, we scrutinized 6147 differentially expressed genes through rigorous differential expression analysis. Through an intersecting approach with the genes within the yellow module, we pinpointed 265 cancer-related genes displaying notable differential expression. Subsequent Cox-regression analysis unveiled that among the 265 genes, four were notably linked to ccRCC prognosis. Furthermore, we executed single-sample gene set enrichment analysis (ssGSEA) on the signature comprising these four genes, subsequently deriving normalized enrichment scores (NESs). This investigation substantiated that the said signature bears significant implications for prognosis, holding the potential to forecast the efficacy of immunotherapy.

预后相关特征预测免疫治疗肾透明细胞癌的益处。
透明细胞肾细胞癌(ccRCC)是肾细胞癌的关键病理亚型。然而,对于推进ccRCC的临床应用,缺乏相关的生物学靶点。在我们的研究中,我们采用加权基因共表达网络分析(WGCNA)来识别13种不同的基因共表达模块,其中黄色模块显示出与肿瘤发生的明显关联。同时,我们通过严格的差异表达分析,仔细检查了6147个差异表达基因。通过与黄色模块内的基因相交的方法,我们确定了265个与癌症相关的基因表现出显著的差异表达。随后的cox回归分析显示,在265个基因中,有4个与ccRCC预后显著相关。此外,我们对包含这四个基因的特征进行了单样本基因集富集分析(ssGSEA),随后得出归一化富集分数(NESs)。本研究证实,上述特征对预后具有重要意义,具有预测免疫治疗疗效的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discover. Oncology
Discover. Oncology Medicine-Endocrinology, Diabetes and Metabolism
CiteScore
2.40
自引率
9.10%
发文量
122
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信