Computing chaotic time-averages from few periodic or non-periodic orbits.

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-06-01 DOI:10.1063/5.0264212
Joshua L Pughe-Sanford, Sam Quinn, Teodor Balabanski, Roman O Grigoriev
{"title":"Computing chaotic time-averages from few periodic or non-periodic orbits.","authors":"Joshua L Pughe-Sanford, Sam Quinn, Teodor Balabanski, Roman O Grigoriev","doi":"10.1063/5.0264212","DOIUrl":null,"url":null,"abstract":"<p><p>For appropriately chosen weights, temporal averages in chaotic systems can be approximated as a weighted sum of averages over reference states, such as unstable periodic orbits. Under strict assumptions, such as completeness of the orbit library, these weights can be formally derived using periodic orbit theory. When these assumptions are violated, weights can be obtained empirically using a Markov partition of the chaotic set. Here, we describe an alternative, data-driven approach to computing weights that allows for an accurate approximation of temporal averages from a variety of reference states, including both periodic orbits and non-periodic trajectory segments embedded within the chaotic set. For a broad class of observables, we demonstrate that the resulting reduced-order statistical description significantly outperforms those based on periodic orbit theory or Markov models, achieving superior accuracy while requiring far fewer reference states-two critical properties for applications to high-dimensional chaotic systems.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 6","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0264212","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

For appropriately chosen weights, temporal averages in chaotic systems can be approximated as a weighted sum of averages over reference states, such as unstable periodic orbits. Under strict assumptions, such as completeness of the orbit library, these weights can be formally derived using periodic orbit theory. When these assumptions are violated, weights can be obtained empirically using a Markov partition of the chaotic set. Here, we describe an alternative, data-driven approach to computing weights that allows for an accurate approximation of temporal averages from a variety of reference states, including both periodic orbits and non-periodic trajectory segments embedded within the chaotic set. For a broad class of observables, we demonstrate that the resulting reduced-order statistical description significantly outperforms those based on periodic orbit theory or Markov models, achieving superior accuracy while requiring far fewer reference states-two critical properties for applications to high-dimensional chaotic systems.

从几个周期或非周期轨道计算混沌时间平均。
对于适当选择的权值,混沌系统中的时间平均值可以近似为参考状态(如不稳定周期轨道)上的平均值的加权和。在严格的假设下,例如轨道库的完备性,这些权值可以用周期轨道理论正式推导出来。当这些假设被违反时,可以使用混沌集的马尔可夫划分经验地获得权重。在这里,我们描述了一种替代的,数据驱动的方法来计算权重,允许从各种参考状态精确逼近时间平均值,包括嵌入混沌集中的周期轨道和非周期轨迹段。对于广泛的可观测对象,我们证明了所得到的降阶统计描述明显优于基于周期轨道理论或马尔可夫模型的描述,在需要更少的参考状态(应用于高维混沌系统的两个关键特性)的同时获得了更高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信