A bounded confidence model to predict how group work affects student math anxiety.

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-06-01 DOI:10.1063/5.0276020
Matthew S Mizuhara, Katherine Toms, Maya Williams
{"title":"A bounded confidence model to predict how group work affects student math anxiety.","authors":"Matthew S Mizuhara, Katherine Toms, Maya Williams","doi":"10.1063/5.0276020","DOIUrl":null,"url":null,"abstract":"<p><p>Math anxiety is negatively correlated with student performance and can result in avoidance of further math/STEM (science, technology, engineering, and mathematics) classes and careers. Cooperative learning (i.e., group work) is a proven strategy that can reduce math anxiety and has additional social and pedagogical benefits. However, depending on the group individuals, some peer interactions can mitigate anxiety, while others exacerbate it. We propose a mathematical modeling approach to help untangle and explore this complex dynamic. We introduce a modification of the Hegselmann-Krause bounded confidence model, including both attractive and repulsive interactions to simulate how math anxiety levels are affected by pairwise student interactions. The model is simple but provides interesting qualitative predictions. In particular, Monte Carlo simulations show that there is an optimal group size to minimize average math anxiety, and that switching group members randomly at certain frequencies can dramatically reduce math anxiety levels. The model is easily adaptable to incorporate additional personal and societal factors, making it ripe for future research.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 6","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0276020","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Math anxiety is negatively correlated with student performance and can result in avoidance of further math/STEM (science, technology, engineering, and mathematics) classes and careers. Cooperative learning (i.e., group work) is a proven strategy that can reduce math anxiety and has additional social and pedagogical benefits. However, depending on the group individuals, some peer interactions can mitigate anxiety, while others exacerbate it. We propose a mathematical modeling approach to help untangle and explore this complex dynamic. We introduce a modification of the Hegselmann-Krause bounded confidence model, including both attractive and repulsive interactions to simulate how math anxiety levels are affected by pairwise student interactions. The model is simple but provides interesting qualitative predictions. In particular, Monte Carlo simulations show that there is an optimal group size to minimize average math anxiety, and that switching group members randomly at certain frequencies can dramatically reduce math anxiety levels. The model is easily adaptable to incorporate additional personal and societal factors, making it ripe for future research.

预测小组作业如何影响学生数学焦虑的有限置信模型。
数学焦虑与学生的表现呈负相关,并可能导致学生回避进一步的数学/STEM(科学、技术、工程和数学)课程和职业。合作学习(即小组工作)是一种行之有效的策略,可以减少数学焦虑,并有额外的社会和教学效益。然而,根据群体个体的不同,一些同伴互动可以减轻焦虑,而另一些则会加剧焦虑。我们提出了一种数学建模方法来帮助解开和探索这种复杂的动态。我们引入了Hegselmann-Krause有界置信模型的修改,包括吸引和排斥互动,以模拟数学焦虑水平如何受到两两学生互动的影响。该模型很简单,但提供了有趣的定性预测。蒙特卡罗模拟表明,存在一个最优的群体规模来最小化平均数学焦虑,并且在特定频率下随机切换小组成员可以显著降低数学焦虑水平。该模型很容易调整,以纳入额外的个人和社会因素,使其成熟为未来的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信