Shih-Hsun Chen, Szu-Ying Wu, Yun-Xun Chang, En-Ning Lui, Chih-Kang Chang, Sheng-Wei Lin, Michael Hsiao, Jinn-Moon Yang, Po-Huang Liang
{"title":"Blocking XIAP:CASP7-p19 selectively induces apoptosis of CASP3/DR malignancies by a novel reversible small molecule.","authors":"Shih-Hsun Chen, Szu-Ying Wu, Yun-Xun Chang, En-Ning Lui, Chih-Kang Chang, Sheng-Wei Lin, Michael Hsiao, Jinn-Moon Yang, Po-Huang Liang","doi":"10.1038/s41419-025-07774-y","DOIUrl":null,"url":null,"abstract":"<p><p>X-linked inhibitor of apoptosis (XIAP) inhibits caspases 3, 7, and 9, thereby preventing cell apoptosis. Endogenous Second mitochondria-derived activator of caspase (Smac) competes out the binding of caspases with XIAP and causes apoptosis, so that Smac mimetics are under clinical trials for anti-cancer chemotherapy. We demonstrated by selectively alkylating caspase 7 (CASP7) to release the active CASP7 for killing the drug-resistant cancer cells with accumulated XIAP:CASP7 resulted from caspase-3 down-regulation (CASP3/DR). However, finding a reversible inhibitor of the protein-protein interaction (PPI) poses a significant challenge. Here, we identified a reversible XIAP:CASP7 inhibitor, 643943, through a multiple-mode virtual screening strategy. In vitro experiments revealed that 643943 bound to CASP7, released the linker-BIR2 domain of XIAP, and activated the caspase. Removing an essential hydroxyl group on 643943 or replacing the OH-interacting Asp93 on CASP7 caused loss of 643943 cytotoxicity, revealing the binding mode. This compound thus selectively killed MCF-7 and other CASP3/DR triple-negative breast cancer cell lines, but not the cancer and normal cell lines expressing higher levels of CASP3 in vitro and in vivo. Moreover, 643943 overcame chemoresistance via down-regulating β-catenin and its associated ABC transporters in paclitaxel-resistant MCF-7 cells. Our studies not only serve as a proof-of-concept for using XIAP:CASP7 as a drug target, but also provide the first reversible XIAP:CASP7 inhibitor for cancer therapy of CASP3/DR malignancies.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":"16 1","pages":"459"},"PeriodicalIF":8.1000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12177060/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death & Disease","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41419-025-07774-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
X-linked inhibitor of apoptosis (XIAP) inhibits caspases 3, 7, and 9, thereby preventing cell apoptosis. Endogenous Second mitochondria-derived activator of caspase (Smac) competes out the binding of caspases with XIAP and causes apoptosis, so that Smac mimetics are under clinical trials for anti-cancer chemotherapy. We demonstrated by selectively alkylating caspase 7 (CASP7) to release the active CASP7 for killing the drug-resistant cancer cells with accumulated XIAP:CASP7 resulted from caspase-3 down-regulation (CASP3/DR). However, finding a reversible inhibitor of the protein-protein interaction (PPI) poses a significant challenge. Here, we identified a reversible XIAP:CASP7 inhibitor, 643943, through a multiple-mode virtual screening strategy. In vitro experiments revealed that 643943 bound to CASP7, released the linker-BIR2 domain of XIAP, and activated the caspase. Removing an essential hydroxyl group on 643943 or replacing the OH-interacting Asp93 on CASP7 caused loss of 643943 cytotoxicity, revealing the binding mode. This compound thus selectively killed MCF-7 and other CASP3/DR triple-negative breast cancer cell lines, but not the cancer and normal cell lines expressing higher levels of CASP3 in vitro and in vivo. Moreover, 643943 overcame chemoresistance via down-regulating β-catenin and its associated ABC transporters in paclitaxel-resistant MCF-7 cells. Our studies not only serve as a proof-of-concept for using XIAP:CASP7 as a drug target, but also provide the first reversible XIAP:CASP7 inhibitor for cancer therapy of CASP3/DR malignancies.
期刊介绍:
Brought to readers by the editorial team of Cell Death & Differentiation, Cell Death & Disease is an online peer-reviewed journal specializing in translational cell death research. It covers a wide range of topics in experimental and internal medicine, including cancer, immunity, neuroscience, and now cancer metabolism.
Cell Death & Disease seeks to encompass the breadth of translational implications of cell death, and topics of particular concentration will include, but are not limited to, the following:
Experimental medicine
Cancer
Immunity
Internal medicine
Neuroscience
Cancer metabolism