Changcheng Guo, Aimaitiaji Kadier, Zhijin Zhang, Shiyu Mao, Bin Yang, Junhua Zheng, Xudong Yao
{"title":"ADT increases prostate cancer cell invasion via altering AR/SALL4/SOX2-OCT4 stem cell signaling.","authors":"Changcheng Guo, Aimaitiaji Kadier, Zhijin Zhang, Shiyu Mao, Bin Yang, Junhua Zheng, Xudong Yao","doi":"10.1007/s10565-025-10046-2","DOIUrl":null,"url":null,"abstract":"<p><p>Early studies indicated that the androgen-deprivation-therapy with antiandrogen Enzalutamide (Enz) could increase prostate cancer patients' survival by an average of 4.8 months. Yet Enz might also have some adverse effects via increasing the prostate cancer (PCa) cell invasion. Here we found Enz treatment could increase SALL4 expression to increase the cancer stem cells-like (CSC-like) population that resulted in increasing the PCa cell invasion. Mechanism dissection revealed that Enz could function via androgen receptor (AR) to transcriptionally regulate the SALL4 expression via direct binding on the SALL4 5'-promoter. The consequences of such Enz/AR/SALL4 axis could upregulate the SOX2-OCT4 expression to increase the CSC-like population and the PCa cells invasion. Together, results from multiple in vitro and in vivo experiments all conclude that Enz may induce the adverse effect of increasing PCa cells invasion via altering the AR/SALL4/SOX2-OCT4 signaling to increase the CSC-like population, and targeting SALL4 may decrease this adverse effect for further suppress the PCa progression.</p>","PeriodicalId":9672,"journal":{"name":"Cell Biology and Toxicology","volume":"41 1","pages":"107"},"PeriodicalIF":5.3000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12176959/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biology and Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10565-025-10046-2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Early studies indicated that the androgen-deprivation-therapy with antiandrogen Enzalutamide (Enz) could increase prostate cancer patients' survival by an average of 4.8 months. Yet Enz might also have some adverse effects via increasing the prostate cancer (PCa) cell invasion. Here we found Enz treatment could increase SALL4 expression to increase the cancer stem cells-like (CSC-like) population that resulted in increasing the PCa cell invasion. Mechanism dissection revealed that Enz could function via androgen receptor (AR) to transcriptionally regulate the SALL4 expression via direct binding on the SALL4 5'-promoter. The consequences of such Enz/AR/SALL4 axis could upregulate the SOX2-OCT4 expression to increase the CSC-like population and the PCa cells invasion. Together, results from multiple in vitro and in vivo experiments all conclude that Enz may induce the adverse effect of increasing PCa cells invasion via altering the AR/SALL4/SOX2-OCT4 signaling to increase the CSC-like population, and targeting SALL4 may decrease this adverse effect for further suppress the PCa progression.
期刊介绍:
Cell Biology and Toxicology (CBT) is an international journal focused on clinical and translational research with an emphasis on molecular and cell biology, genetic and epigenetic heterogeneity, drug discovery and development, and molecular pharmacology and toxicology. CBT has a disease-specific scope prioritizing publications on gene and protein-based regulation, intracellular signaling pathway dysfunction, cell type-specific function, and systems in biomedicine in drug discovery and development. CBT publishes original articles with outstanding, innovative and significant findings, important reviews on recent research advances and issues of high current interest, opinion articles of leading edge science, and rapid communication or reports, on molecular mechanisms and therapies in diseases.