{"title":"RNA Therapeutics: Focus on Antisense Oligonucleotides in the Nervous System.","authors":"Betül Ertural, Büşra Nur Çiçek, Işıl Aksan Kurnaz","doi":"10.4062/biomolther.2025.022","DOIUrl":null,"url":null,"abstract":"<p><p>RNA therapeutics represent a disruptive technology that has transformed drug discovery and manufacturing, gaining significant prominence during the COVID-19 pandemic. RNA therapeutics encompass diverse molecules like antisense oligonucleotides (ASOs), small interfering RNAs (siRNAs), microRNAs (miRNAs), RNA aptamers, and messenger RNAs (mRNAs), which can function through different mechanisms. RNA therapeutics are increasingly used to treat various diseases, including neurological disorders. For example, ASO therapies such as nusinersen for spinal muscular atrophy and eteplirsen for Duchenne muscular dystrophy are successful applications of RNA-based treatment. Emerging ASO treatments for Huntington's disease and amyotrophic lateral sclerosis are also promising, with ongoing clinical trials demonstrating significant reductions in disease-associated proteins. Still, delivery of these molecules remains a pivotal challenge in RNA therapeutics, especially for ASOs in penetrating the blood-brain barrier to target neurological disorders effectively. Nanoparticle-based formulations have emerged as leading strategies to enhance RNA stability, reduce immunogenicity, and improve cellular uptake. Despite these advances, significant hurdles remain, including optimizing pharmacokinetics, minimizing off-target effects, and ensuring sustained therapeutic efficacy. Regulatory frameworks are evolving to accommodate the unique challenges of RNA-based therapies, including ASOs with efforts underway to establish comprehensive guidelines for RNA therapeutics, yet there are also sustainable manufacturing issues that need to be considered for long-term feasibility. By addressing these challenges, RNA therapeutics hold immense potential to revolutionize treatment paradigms for neurological disorders. Looking forward, the future of RNA therapeutics in neurology appears promising but requires continued interdisciplinary collaboration and technological innovation.</p>","PeriodicalId":8949,"journal":{"name":"Biomolecules & Therapeutics","volume":" ","pages":"572-581"},"PeriodicalIF":3.2000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12215037/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules & Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4062/biomolther.2025.022","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
RNA therapeutics represent a disruptive technology that has transformed drug discovery and manufacturing, gaining significant prominence during the COVID-19 pandemic. RNA therapeutics encompass diverse molecules like antisense oligonucleotides (ASOs), small interfering RNAs (siRNAs), microRNAs (miRNAs), RNA aptamers, and messenger RNAs (mRNAs), which can function through different mechanisms. RNA therapeutics are increasingly used to treat various diseases, including neurological disorders. For example, ASO therapies such as nusinersen for spinal muscular atrophy and eteplirsen for Duchenne muscular dystrophy are successful applications of RNA-based treatment. Emerging ASO treatments for Huntington's disease and amyotrophic lateral sclerosis are also promising, with ongoing clinical trials demonstrating significant reductions in disease-associated proteins. Still, delivery of these molecules remains a pivotal challenge in RNA therapeutics, especially for ASOs in penetrating the blood-brain barrier to target neurological disorders effectively. Nanoparticle-based formulations have emerged as leading strategies to enhance RNA stability, reduce immunogenicity, and improve cellular uptake. Despite these advances, significant hurdles remain, including optimizing pharmacokinetics, minimizing off-target effects, and ensuring sustained therapeutic efficacy. Regulatory frameworks are evolving to accommodate the unique challenges of RNA-based therapies, including ASOs with efforts underway to establish comprehensive guidelines for RNA therapeutics, yet there are also sustainable manufacturing issues that need to be considered for long-term feasibility. By addressing these challenges, RNA therapeutics hold immense potential to revolutionize treatment paradigms for neurological disorders. Looking forward, the future of RNA therapeutics in neurology appears promising but requires continued interdisciplinary collaboration and technological innovation.
期刊介绍:
Biomolecules & Therapeutics (Biomolecules & Therapeutics) (Print ISSN 1976-9148, Online ISSN 2005-4483) is an international, peer-reviewed, open access journal that covers pharmacological and toxicological fields related to bioactive molecules and therapeutics. It was launched in 1993 as "The Journal of Applied Pharmacology (ISSN 1225-6110)", and renamed "Biomolecules & Therapeutics" (Biomol Ther: abbreviated form) in 2008 (Volume 16, No. 1). It is published bimonthly in January, March, May, July, September and November. All manuscripts should be creative, informative, and contribute to the development of new drugs. Articles in the following categories are published: review articles and research articles.