Catarina Gonçalves, Miguel A. R. B. Castanho, Marco Cavaco, Vera Neves
{"title":"Antimigratory and Antiproliferative Effects of the Brain-Targeted Peptide Conjugate PepH3-vCPP2319 on Triple Negative Breast Cancer Cell Cultures","authors":"Catarina Gonçalves, Miguel A. R. B. Castanho, Marco Cavaco, Vera Neves","doi":"10.1002/psc.70035","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype affecting mostly younger women with a poor 5-year overall survival. It is characterized by a high metastization rate, particularly to the brain, where the blood–brain barrier (BBB) hinders the pharmaceuticals delivery. New anticancer drugs able to inhibit cell migration are required to effectively prevent the development of metastasis. PepH3-vCPP2319 (AGILKRW(Ahx)WRRRYRRWRRRRRQRRRPRR-amide), consisting of the conjugation of the BBB peptide shuttle (BBBpS) PepH3 (AGILKRW-amide) to the anticancer peptide (ACP) vCPP2319 (WRRRYRRWRRRRRQRRRPRR-amide), was reported to have high anticancer activity (IC<sub>50</sub> = 5.0 μM) toward highly aggressive TNBC cells (MDA-MB-231) paired with 2-fold increased accumulation in the brain when compared to unconjugated vCPP2319. Herein, we demonstrate that PepH3-vCPP2319 inhibits cell migration and proliferation in wound healing assays, outperforming the gold standard small chemical inhibitor, iCRT-3. The concentration required to inhibit cell migration is 10-fold lower for PepH3-vCPP2319 (0.5 μM) when compared with iCRT-3 (50 μM). Likewise, PepH3-vCPP2319 at 2.5 μM was more efficient in preventing cell proliferation when compared with 50 μM iCRT-3, with 45% reduction in spheroid diameter. This study sheds light on the antimetastatic potential of PepH3-vCPP2319 through abrogation of cell migration to distant sites, including the brain.</p>\n </div>","PeriodicalId":16946,"journal":{"name":"Journal of Peptide Science","volume":"31 8","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Peptide Science","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/psc.70035","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype affecting mostly younger women with a poor 5-year overall survival. It is characterized by a high metastization rate, particularly to the brain, where the blood–brain barrier (BBB) hinders the pharmaceuticals delivery. New anticancer drugs able to inhibit cell migration are required to effectively prevent the development of metastasis. PepH3-vCPP2319 (AGILKRW(Ahx)WRRRYRRWRRRRRQRRRPRR-amide), consisting of the conjugation of the BBB peptide shuttle (BBBpS) PepH3 (AGILKRW-amide) to the anticancer peptide (ACP) vCPP2319 (WRRRYRRWRRRRRQRRRPRR-amide), was reported to have high anticancer activity (IC50 = 5.0 μM) toward highly aggressive TNBC cells (MDA-MB-231) paired with 2-fold increased accumulation in the brain when compared to unconjugated vCPP2319. Herein, we demonstrate that PepH3-vCPP2319 inhibits cell migration and proliferation in wound healing assays, outperforming the gold standard small chemical inhibitor, iCRT-3. The concentration required to inhibit cell migration is 10-fold lower for PepH3-vCPP2319 (0.5 μM) when compared with iCRT-3 (50 μM). Likewise, PepH3-vCPP2319 at 2.5 μM was more efficient in preventing cell proliferation when compared with 50 μM iCRT-3, with 45% reduction in spheroid diameter. This study sheds light on the antimetastatic potential of PepH3-vCPP2319 through abrogation of cell migration to distant sites, including the brain.
期刊介绍:
The official Journal of the European Peptide Society EPS
The Journal of Peptide Science is a cooperative venture of John Wiley & Sons, Ltd and the European Peptide Society, undertaken for the advancement of international peptide science by the publication of original research results and reviews. The Journal of Peptide Science publishes three types of articles: Research Articles, Rapid Communications and Reviews.
The scope of the Journal embraces the whole range of peptide chemistry and biology: the isolation, characterisation, synthesis properties (chemical, physical, conformational, pharmacological, endocrine and immunological) and applications of natural peptides; studies of their analogues, including peptidomimetics; peptide antibiotics and other peptide-derived complex natural products; peptide and peptide-related drug design and development; peptide materials and nanomaterials science; combinatorial peptide research; the chemical synthesis of proteins; and methodological advances in all these areas. The spectrum of interests is well illustrated by the published proceedings of the regular international Symposia of the European, American, Japanese, Australian, Chinese and Indian Peptide Societies.