{"title":"Autonomous Vehicle Forensics: Investigating Data Streams for Traffic Prediction and Incident Mitigation","authors":"Vivek Srivastava;Sumita Mishra;Nishu Gupta;Eid Albalawi;Shakila Basheer","doi":"10.1109/TCE.2025.3564924","DOIUrl":null,"url":null,"abstract":"The growing implementation of autonomous cars in intelligent transportation systems requires solid traffic forecasting and incident prevention mechanisms. Yet, there are difficulties in attaining system interoperability and user acceptability. In this research, a deep learning-based framework is suggested for traffic forecasting and prevention based on the use of a forensic method on autonomous car data. A restricted boltzmann machine derives deep, weighted features which are subsequently handled by an adaptive dilated long short-term memory model optimized by using the position updated osprey optimization algorithm. Forecasted traffic data are analyzed further to formulate mitigation strategies such as optimized path planning. Experimental results demonstrate better performance compared to the baseline methods based on various metrics, highlighting the effectiveness of the framework in improving future transportation systems and autonomous vehicle forensics.","PeriodicalId":13208,"journal":{"name":"IEEE Transactions on Consumer Electronics","volume":"71 1","pages":"1211-1218"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Consumer Electronics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10977970/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The growing implementation of autonomous cars in intelligent transportation systems requires solid traffic forecasting and incident prevention mechanisms. Yet, there are difficulties in attaining system interoperability and user acceptability. In this research, a deep learning-based framework is suggested for traffic forecasting and prevention based on the use of a forensic method on autonomous car data. A restricted boltzmann machine derives deep, weighted features which are subsequently handled by an adaptive dilated long short-term memory model optimized by using the position updated osprey optimization algorithm. Forecasted traffic data are analyzed further to formulate mitigation strategies such as optimized path planning. Experimental results demonstrate better performance compared to the baseline methods based on various metrics, highlighting the effectiveness of the framework in improving future transportation systems and autonomous vehicle forensics.
期刊介绍:
The main focus for the IEEE Transactions on Consumer Electronics is the engineering and research aspects of the theory, design, construction, manufacture or end use of mass market electronics, systems, software and services for consumers.