Automated extraction of materials system charts using a large language model framework

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Quanliang Liu, Maciej P Polak, MD Al Amin Shuvo, Hrishikesh Shridhar Deodhar, Jeongsoo Han, Dane Morgan, Hyunseok Oh
{"title":"Automated extraction of materials system charts using a large language model framework","authors":"Quanliang Liu,&nbsp;Maciej P Polak,&nbsp;MD Al Amin Shuvo,&nbsp;Hrishikesh Shridhar Deodhar,&nbsp;Jeongsoo Han,&nbsp;Dane Morgan,&nbsp;Hyunseok Oh","doi":"10.1016/j.scriptamat.2025.116815","DOIUrl":null,"url":null,"abstract":"<div><div>A framework leveraging large language models (LLMs) is developed to systematically extract and organize Processing-Mechanism-Structure-Mechanism-Property (P-M-S-M-P) relationships from materials science and engineering literature, with a particular focus on metallurgy. Using multi-stage prompts, our method identifies key properties, microstructures, processing methods, and associated mechanisms, then integrates them to generate comprehensive materials system charts. Additionally, the framework refines the extracted system charts for visualization, enabling the creation of informative diagrams that capture essential insights from each paper. Evaluated across 70 papers spanning multiple alloy systems and research types, the approach achieves 94 % accuracy in mechanism extraction, 87 % in information source labeling, and 97 % in the human-machine readability index for processing, structure, and property entities. The prompts and codes are provided alongside guidelines for researchers unfamiliar with coding. This framework offers an effective methodology for knowledge extraction in materials science using the P-M-S-M-P framework.</div></div>","PeriodicalId":423,"journal":{"name":"Scripta Materialia","volume":"267 ","pages":"Article 116815"},"PeriodicalIF":5.3000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scripta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359646225002787","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A framework leveraging large language models (LLMs) is developed to systematically extract and organize Processing-Mechanism-Structure-Mechanism-Property (P-M-S-M-P) relationships from materials science and engineering literature, with a particular focus on metallurgy. Using multi-stage prompts, our method identifies key properties, microstructures, processing methods, and associated mechanisms, then integrates them to generate comprehensive materials system charts. Additionally, the framework refines the extracted system charts for visualization, enabling the creation of informative diagrams that capture essential insights from each paper. Evaluated across 70 papers spanning multiple alloy systems and research types, the approach achieves 94 % accuracy in mechanism extraction, 87 % in information source labeling, and 97 % in the human-machine readability index for processing, structure, and property entities. The prompts and codes are provided alongside guidelines for researchers unfamiliar with coding. This framework offers an effective methodology for knowledge extraction in materials science using the P-M-S-M-P framework.
使用大型语言模型框架自动提取材料系统图
开发了一个利用大型语言模型(llm)的框架,从材料科学和工程文献中系统地提取和组织加工-机制-结构-机制-属性(P-M-S-M-P)关系,特别关注冶金学。使用多阶段提示,我们的方法识别关键属性、微观结构、加工方法和相关机制,然后将它们集成以生成综合材料系统图。此外,该框架为可视化细化了提取的系统图表,从而能够创建信息图表,从每篇论文中获取重要的见解。对70篇涵盖多种合金系统和研究类型的论文进行了评估,该方法在机制提取方面达到了94%的准确率,在信息源标记方面达到了87%,在加工、结构和属性实体的人机可读性指数方面达到了97%。提示和代码与不熟悉编码的研究人员的指导方针一起提供。该框架为材料科学中使用P-M-S-M-P框架提取知识提供了一种有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Scripta Materialia
Scripta Materialia 工程技术-材料科学:综合
CiteScore
11.40
自引率
5.00%
发文量
581
审稿时长
34 days
期刊介绍: Scripta Materialia is a LETTERS journal of Acta Materialia, providing a forum for the rapid publication of short communications on the relationship between the structure and the properties of inorganic materials. The emphasis is on originality rather than incremental research. Short reports on the development of materials with novel or substantially improved properties are also welcomed. Emphasis is on either the functional or mechanical behavior of metals, ceramics and semiconductors at all length scales.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信