Shared mobility demand prediction via A fast spatiotemporal tensor autoregression

IF 7.5 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Hongyu Yan , Zhiqiang Lv , Jianbo Li , Benjia Chu , Zhihao Xu
{"title":"Shared mobility demand prediction via A fast spatiotemporal tensor autoregression","authors":"Hongyu Yan ,&nbsp;Zhiqiang Lv ,&nbsp;Jianbo Li ,&nbsp;Benjia Chu ,&nbsp;Zhihao Xu","doi":"10.1016/j.engappai.2025.111467","DOIUrl":null,"url":null,"abstract":"<div><div>Shared mobility is critical to urban transportation, yet its complex spatiotemporal dynamics challenge traditional prediction methods. We propose the Tucker Decomposition-based Spatiotemporal Tensor Autoregressive Model (T-STAR), which leverages tensor-structured data modeling and Tucker decomposition to efficiently capture multi-dimensional dependencies. Unlike conventional methods, T-STAR preserves high-dimensional structures by decomposing raw spatiotemporal data into a low-rank core tensor and mode-specific factor matrices, reducing complexity and enhancing interpretability by decoupling spatial, temporal, and modal interactions. Experimental results on three benchmark datasets demonstrate T-STAR's strong performance. On the Beijing Taxi Trajectory Dataset (TaxiBJ), T-STAR achieves Mean Absolute Error (MAE) of 23.53 and Root Mean Square Error (RMSE) of 37.71, improving performance by 18.5 % and 21.2 % over baseline averages. On the New York City Taxi Dataset (NYCtaxi), it records MAE of 18.18 and RMSE of 46.87, reducing errors by 22.7 % and 15.4 %. In the sparse-demand New York City Bike-Sharing Dataset (NYCbike), it maintains robust accuracy with MAE of 7.95 and RMSE of 14.32, outperforming baselines by 14.1 % and 17.9 %, respectively. Most notably, T-STAR achieves these results at high speed: on TaxiBJ, it completes a prediction in just 0.35 seconds–87 % faster than the Adaptive Graph Convolutional Recurrent Network (AGCRN) and 99.8 % faster than the Diffusion Convolutional Recurrent Neural Network (DCRNN). By retaining over 95 % of key spatiotemporal correlations through Tucker compression, T-STAR reduces prediction error by 20–30 % while delivering real-time performance, offering a scalable framework for urban traffic prediction and shared vehicle scheduling. Code and data are both available at yanhongyu0/TSTAR (github.com)</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"158 ","pages":"Article 111467"},"PeriodicalIF":7.5000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197625014691","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Shared mobility is critical to urban transportation, yet its complex spatiotemporal dynamics challenge traditional prediction methods. We propose the Tucker Decomposition-based Spatiotemporal Tensor Autoregressive Model (T-STAR), which leverages tensor-structured data modeling and Tucker decomposition to efficiently capture multi-dimensional dependencies. Unlike conventional methods, T-STAR preserves high-dimensional structures by decomposing raw spatiotemporal data into a low-rank core tensor and mode-specific factor matrices, reducing complexity and enhancing interpretability by decoupling spatial, temporal, and modal interactions. Experimental results on three benchmark datasets demonstrate T-STAR's strong performance. On the Beijing Taxi Trajectory Dataset (TaxiBJ), T-STAR achieves Mean Absolute Error (MAE) of 23.53 and Root Mean Square Error (RMSE) of 37.71, improving performance by 18.5 % and 21.2 % over baseline averages. On the New York City Taxi Dataset (NYCtaxi), it records MAE of 18.18 and RMSE of 46.87, reducing errors by 22.7 % and 15.4 %. In the sparse-demand New York City Bike-Sharing Dataset (NYCbike), it maintains robust accuracy with MAE of 7.95 and RMSE of 14.32, outperforming baselines by 14.1 % and 17.9 %, respectively. Most notably, T-STAR achieves these results at high speed: on TaxiBJ, it completes a prediction in just 0.35 seconds–87 % faster than the Adaptive Graph Convolutional Recurrent Network (AGCRN) and 99.8 % faster than the Diffusion Convolutional Recurrent Neural Network (DCRNN). By retaining over 95 % of key spatiotemporal correlations through Tucker compression, T-STAR reduces prediction error by 20–30 % while delivering real-time performance, offering a scalable framework for urban traffic prediction and shared vehicle scheduling. Code and data are both available at yanhongyu0/TSTAR (github.com)
基于快速时空张量自回归的共享出行需求预测
共享出行是城市交通的重要组成部分,但其复杂的时空动态对传统的预测方法提出了挑战。我们提出了基于Tucker分解的时空张量自回归模型(T-STAR),该模型利用张量结构数据建模和Tucker分解来有效捕获多维依赖关系。与传统方法不同,T-STAR通过将原始时空数据分解为低秩核心张量和模式特定因子矩阵来保留高维结构,通过解耦空间、时间和模式相互作用来降低复杂性并增强可解释性。在三个基准数据集上的实验结果证明了T-STAR的强大性能。在北京出租车轨迹数据集(TaxiBJ)上,T-STAR的平均绝对误差(MAE)为23.53,均方根误差(RMSE)为37.71,性能分别比基线平均值提高18.5%和21.2%。在纽约市出租车数据集(NYCtaxi)上,它记录了18.18的MAE和46.87的RMSE,减少了22.7%和15.4%的错误。在需求稀疏的纽约市共享单车数据集(NYCbike)中,它保持了7.95的MAE和14.32的RMSE的稳健准确性,分别比基线高出14.1%和17.9%。最值得注意的是,T-STAR以高速实现了这些结果:在TaxiBJ上,它只需0.35秒就完成了预测,比自适应图卷积循环网络(AGCRN)快87%,比扩散卷积循环神经网络(DCRNN)快99.8%。通过Tucker压缩保留95%以上的关键时空相关性,T-STAR在提供实时性能的同时将预测误差降低了20 - 30%,为城市交通预测和共享车辆调度提供了可扩展的框架。代码和数据均可在yanhongyu0/TSTAR (github.com)获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Engineering Applications of Artificial Intelligence
Engineering Applications of Artificial Intelligence 工程技术-工程:电子与电气
CiteScore
9.60
自引率
10.00%
发文量
505
审稿时长
68 days
期刊介绍: Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信