Transitional active learning of small probabilities

IF 6.9 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Pengfei Wei
{"title":"Transitional active learning of small probabilities","authors":"Pengfei Wei","doi":"10.1016/j.cma.2025.118144","DOIUrl":null,"url":null,"abstract":"<div><div>Efficient estimation of small failure probability subjected to multiple failure domains is one of the central and challenging issues in structural reliability analysis and other rare event analysis tasks, especially in case where the computational resource is quite limited but high accuracy is required. A new active learning scheme, named as Transitional Bayesian Quadrature (TBQ), is proposed to fill this gap. Leveraging two types of smooth Artificial Intermediate Distributions (AIDs) for sequentially approaching the optimal importance sampling density, a Bayesian quadrature technique equipped with two novel acquisition functions is proposed for adaptive specification of the tempering parameters of the AIDs and active learning of the ratios of successive intermediate probabilities, with desired accuracy. Of special contribution is the presentation of closed-form formulations for facilitating the numerical computations concerning both acquisition functions and quadrature rules, making the TBQ algorithms numerically efficient and robust. A bridging scheme is also introduced for improving the stability. Two benchmark studies and two engineering applications are ultimately presented for demonstrating the effectiveness and relative merits of the two TBQ algorithms.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"444 ","pages":"Article 118144"},"PeriodicalIF":6.9000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782525004165","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient estimation of small failure probability subjected to multiple failure domains is one of the central and challenging issues in structural reliability analysis and other rare event analysis tasks, especially in case where the computational resource is quite limited but high accuracy is required. A new active learning scheme, named as Transitional Bayesian Quadrature (TBQ), is proposed to fill this gap. Leveraging two types of smooth Artificial Intermediate Distributions (AIDs) for sequentially approaching the optimal importance sampling density, a Bayesian quadrature technique equipped with two novel acquisition functions is proposed for adaptive specification of the tempering parameters of the AIDs and active learning of the ratios of successive intermediate probabilities, with desired accuracy. Of special contribution is the presentation of closed-form formulations for facilitating the numerical computations concerning both acquisition functions and quadrature rules, making the TBQ algorithms numerically efficient and robust. A bridging scheme is also introduced for improving the stability. Two benchmark studies and two engineering applications are ultimately presented for demonstrating the effectiveness and relative merits of the two TBQ algorithms.
小概率的过渡主动学习
多失效域下小失效概率的有效估计是结构可靠性分析和其他罕见事件分析任务的核心和挑战性问题之一,特别是在计算资源非常有限但精度要求很高的情况下。提出了一种新的主动学习方案,称为过渡贝叶斯正交(TBQ),以填补这一空白。利用两种平滑的人工中间分布(AIDs)来顺序逼近最优重要采样密度,提出了一种配备两种新型采集函数的贝叶斯正交技术,用于自适应规范AIDs的调节参数和主动学习连续中间概率的比率,并具有所需的精度。特别的贡献是提出了封闭形式的公式,方便了关于采集函数和正交规则的数值计算,使TBQ算法在数值上高效和鲁棒。还介绍了一种桥接方案,以提高稳定性。最后给出了两个基准研究和两个工程应用,以证明两种TBQ算法的有效性和相对优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.70
自引率
15.30%
发文量
719
审稿时长
44 days
期刊介绍: Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信