{"title":"Optimization of thermoelectric properties of n-type Mn- and Te-doped Mg3Sb2-xBix phases","authors":"Trong Phan , Yu-Chih Tseng , Yurij Mozharivskyj","doi":"10.1016/j.solidstatesciences.2025.108011","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the effects of Mg and Bi amounts, ball milling duration, and sintering conditions on the purity and thermoelectric properties of the Mn- and Te-doped Mg<sub>3</sub>Sb<sub>2-<em>x</em></sub>Bi<sub><em>x</em></sub> phases (Mg<sub>2.97+<em>y</em></sub>Mn<sub>0.03</sub>Bi<sub><em>x</em></sub>Sb<sub>1.99-<em>x</em></sub>Te<sub>0.01</sub>). We found that excess Mg is necessary to achieve phase pure samples, but too much Mg forms impurities that decrease thermoelectric efficiency. Increasing Bi content leads to lower phase stability and decomposition. There is also an optimal ball milling time, beyond which decomposition of the material occurs. The highest figure of merit, zT, of 1.44 was achieved for the Mg<sub>3.27</sub>Mn<sub>0.03</sub>Bi<sub>1.30</sub>Sb<sub>0.69</sub>Te<sub>0.01</sub> sample at 623K, which is comparable to the performance of Bi<sub>2</sub>Te<sub>3</sub>. Our findings suggest that Mg<sub>3</sub>Sb<sub>2-<em>x</em></sub>Bi<sub><em>x</em></sub> phases are promising low-cost and environmentally friendly thermoelectric materials mid-range temperature applications.</div></div>","PeriodicalId":432,"journal":{"name":"Solid State Sciences","volume":"168 ","pages":"Article 108011"},"PeriodicalIF":3.4000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Sciences","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S129325582500189X","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores the effects of Mg and Bi amounts, ball milling duration, and sintering conditions on the purity and thermoelectric properties of the Mn- and Te-doped Mg3Sb2-xBix phases (Mg2.97+yMn0.03BixSb1.99-xTe0.01). We found that excess Mg is necessary to achieve phase pure samples, but too much Mg forms impurities that decrease thermoelectric efficiency. Increasing Bi content leads to lower phase stability and decomposition. There is also an optimal ball milling time, beyond which decomposition of the material occurs. The highest figure of merit, zT, of 1.44 was achieved for the Mg3.27Mn0.03Bi1.30Sb0.69Te0.01 sample at 623K, which is comparable to the performance of Bi2Te3. Our findings suggest that Mg3Sb2-xBix phases are promising low-cost and environmentally friendly thermoelectric materials mid-range temperature applications.
期刊介绍:
Solid State Sciences is the journal for researchers from the broad solid state chemistry and physics community. It publishes key articles on all aspects of solid state synthesis, structure-property relationships, theory and functionalities, in relation with experiments.
Key topics for stand-alone papers and special issues:
-Novel ways of synthesis, inorganic functional materials, including porous and glassy materials, hybrid organic-inorganic compounds and nanomaterials
-Physical properties, emphasizing but not limited to the electrical, magnetical and optical features
-Materials related to information technology and energy and environmental sciences.
The journal publishes feature articles from experts in the field upon invitation.
Solid State Sciences - your gateway to energy-related materials.