Two-component jet model for the afterglow emission of GRB 201216C and GRB 221009A and implications for jet structure of very-high-energy gamma-ray bursts
Yuri Sato , Kohta Murase , Yutaka Ohira , Susumu Inoue , Ryo Yamazaki
{"title":"Two-component jet model for the afterglow emission of GRB 201216C and GRB 221009A and implications for jet structure of very-high-energy gamma-ray bursts","authors":"Yuri Sato , Kohta Murase , Yutaka Ohira , Susumu Inoue , Ryo Yamazaki","doi":"10.1016/j.jheap.2025.100415","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, afterglow emission in the very-high-energy (VHE) band above 100 GeV has been clearly detected for at least five gamma-ray bursts (GRBs 180720B, 190114C, 190829A, 201216C and 221009A). For some of these VHE GRBs, we previously proposed a two-component jet model, consisting of two uniform jets with narrow and wide opening angles to explain their multiwavelength afterglows including VHE gamma rays. In this paper, we show that the VHE spectra and light curves of GRBs 201216C and 221009A can also be reasonably explained by our two-component jet model, based on two top-hat jets propagating into a constant-density circumburst medium. We find that for the five VHE GRBs, the collimation-corrected kinetic energies of the narrow and wide jets have typical values of <span><math><mn>5</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>49</mn></mrow></msup></math></span> erg and <span><math><mn>5</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>50</mn></mrow></msup></math></span> erg, respectively. We discuss the similarities and differences among the VHE GRBs, and the implications for the structure of their jets. In agreement with previous studies, the narrow jet of GRB 221009A has an atypically small opening angle, so that its intrinsic, collimation-corrected energy remains within a plausible range despite the unusually large isotropic-equivalent energy.</div></div>","PeriodicalId":54265,"journal":{"name":"Journal of High Energy Astrophysics","volume":"48 ","pages":"Article 100415"},"PeriodicalIF":10.5000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214404825000965","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, afterglow emission in the very-high-energy (VHE) band above 100 GeV has been clearly detected for at least five gamma-ray bursts (GRBs 180720B, 190114C, 190829A, 201216C and 221009A). For some of these VHE GRBs, we previously proposed a two-component jet model, consisting of two uniform jets with narrow and wide opening angles to explain their multiwavelength afterglows including VHE gamma rays. In this paper, we show that the VHE spectra and light curves of GRBs 201216C and 221009A can also be reasonably explained by our two-component jet model, based on two top-hat jets propagating into a constant-density circumburst medium. We find that for the five VHE GRBs, the collimation-corrected kinetic energies of the narrow and wide jets have typical values of erg and erg, respectively. We discuss the similarities and differences among the VHE GRBs, and the implications for the structure of their jets. In agreement with previous studies, the narrow jet of GRB 221009A has an atypically small opening angle, so that its intrinsic, collimation-corrected energy remains within a plausible range despite the unusually large isotropic-equivalent energy.
期刊介绍:
The journal welcomes manuscripts on theoretical models, simulations, and observations of highly energetic astrophysical objects both in our Galaxy and beyond. Among those, black holes at all scales, neutron stars, pulsars and their nebula, binaries, novae and supernovae, their remnants, active galaxies, and clusters are just a few examples. The journal will consider research across the whole electromagnetic spectrum, as well as research using various messengers, such as gravitational waves or neutrinos. Effects of high-energy phenomena on cosmology and star-formation, results from dedicated surveys expanding the knowledge of extreme environments, and astrophysical implications of dark matter are also welcomed topics.