Closed orbits of MHD equilibria with orientation-reversing symmetry

IF 2.7 3区 数学 Q1 MATHEMATICS, APPLIED
David Perrella
{"title":"Closed orbits of MHD equilibria with orientation-reversing symmetry","authors":"David Perrella","doi":"10.1016/j.physd.2025.134762","DOIUrl":null,"url":null,"abstract":"<div><div>As a generalisation of the periodic orbit structure often seen in reflection or mirror symmetric MHD equilibria, we consider equilibria with other orientation-reversing symmetries. An example of such a symmetry, which is a not a reflection, is the parity transformation <span><math><mrow><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>z</mi><mo>)</mo></mrow><mo>↦</mo><mrow><mo>(</mo><mo>−</mo><mi>x</mi><mo>,</mo><mo>−</mo><mi>y</mi><mo>,</mo><mo>−</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. It is shown under any orientation-reversing isometry, that if the pressure function is assumed to have toroidally nested level sets, then all orbits on the tori are necessarily periodic. The techniques involved are almost entirely topological in nature and give rise to a handy index describing how a diffeomorphism of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> alters the poloidal and toroidal curves of an invariant embedded 2-torus.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"481 ","pages":"Article 134762"},"PeriodicalIF":2.7000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278925002398","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

As a generalisation of the periodic orbit structure often seen in reflection or mirror symmetric MHD equilibria, we consider equilibria with other orientation-reversing symmetries. An example of such a symmetry, which is a not a reflection, is the parity transformation (x,y,z)(x,y,z) in R3. It is shown under any orientation-reversing isometry, that if the pressure function is assumed to have toroidally nested level sets, then all orbits on the tori are necessarily periodic. The techniques involved are almost entirely topological in nature and give rise to a handy index describing how a diffeomorphism of R3 alters the poloidal and toroidal curves of an invariant embedded 2-torus.
具有方向反转对称的MHD平衡的闭合轨道
作为在反射对称或镜像对称MHD平衡中常见的周期轨道结构的推广,我们考虑了具有其他方向反转对称性的平衡。这种对称的一个例子,它不是反射,是宇称变换(x,y,z)在R3中的(- x, - y, - z)。在任意方向反转等距下,如果假设压力函数具有环面嵌套的水平集,则环面上的所有轨道都必然是周期性的。所涉及的技术在本质上几乎完全是拓扑的,并且产生了一个方便的指标来描述R3的微分同构如何改变不变嵌入2环面的极向和环向曲线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信