Fixed-time tracking control for fractional-order uncertain parametric nonlinear systems with input delay: A command filter-based neuroadaptive control method

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Xiyu Zhang , Chun Feng , Youjun Zhou , Xiongfeng Deng
{"title":"Fixed-time tracking control for fractional-order uncertain parametric nonlinear systems with input delay: A command filter-based neuroadaptive control method","authors":"Xiyu Zhang ,&nbsp;Chun Feng ,&nbsp;Youjun Zhou ,&nbsp;Xiongfeng Deng","doi":"10.1016/j.chaos.2025.116734","DOIUrl":null,"url":null,"abstract":"<div><div>This paper discusses the fixed-time tracking control (FTTC) problem of fractional-order nonlinear systems (FONSs) subject to uncertain dynamics, parametric nonlinearities and input delay. An radial basis function neural network (RBFNN) is applied to tackle uncertain nonlinearities and input delay nonlinearity in the backstepping control (BC) process, with the vectors of weight and basis function being reconstructed accordingly. Meanwhile, adaptive control laws are designed to enable online updating of the new weight and approximation error. Moreover, a nonlinear fractional-order command filter (FOCF) is utilized to circumvent the “complexity explosion” issue caused by BC method, and compensation control strategies are presented to compensate for filtering errors. By introducing the FOCF, BC method and fixed-time (FT) control theory, a neuroadaptive FTTC strategy with command filter (CF) is ultimately proposed. This strategy ensures that the tracking error converges to a small neighborhood of zero in a fixed time, while maintaining the boundedness of all signals in the closed-loop system. Eventually, the validity of the developed control strategy is testified through three aspects.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"199 ","pages":"Article 116734"},"PeriodicalIF":5.3000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925007477","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper discusses the fixed-time tracking control (FTTC) problem of fractional-order nonlinear systems (FONSs) subject to uncertain dynamics, parametric nonlinearities and input delay. An radial basis function neural network (RBFNN) is applied to tackle uncertain nonlinearities and input delay nonlinearity in the backstepping control (BC) process, with the vectors of weight and basis function being reconstructed accordingly. Meanwhile, adaptive control laws are designed to enable online updating of the new weight and approximation error. Moreover, a nonlinear fractional-order command filter (FOCF) is utilized to circumvent the “complexity explosion” issue caused by BC method, and compensation control strategies are presented to compensate for filtering errors. By introducing the FOCF, BC method and fixed-time (FT) control theory, a neuroadaptive FTTC strategy with command filter (CF) is ultimately proposed. This strategy ensures that the tracking error converges to a small neighborhood of zero in a fixed time, while maintaining the boundedness of all signals in the closed-loop system. Eventually, the validity of the developed control strategy is testified through three aspects.
带有输入延迟的分数阶不确定参数非线性系统的定时跟踪控制:一种基于命令滤波器的神经自适应控制方法
讨论了具有不确定动力学、参数非线性和输入时滞的分数阶非线性系统的定时跟踪控制问题。将径向基函数神经网络(RBFNN)应用于反步控制(BC)过程中的不确定非线性和输入延迟非线性,并对权向量和基函数向量进行重构。同时设计了自适应控制律,实现了新权值和逼近误差的在线更新。此外,利用非线性分数阶命令滤波器(FOCF)来解决BC方法引起的“复杂度爆炸”问题,并提出补偿控制策略来补偿滤波误差。通过引入FOCF、BC方法和固定时间(FT)控制理论,最终提出了一种带有命令滤波器(CF)的神经自适应FTTC策略。该策略保证了跟踪误差在固定时间内收敛到零的小邻域,同时保持闭环系统中所有信号的有界性。最后,从三个方面验证了所提控制策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信